{"title":"Morrey regularity of strong solutions to parabolic equations with VMO coefficients","authors":"Lubomira G Softova","doi":"10.1016/S0764-4442(01)02107-3","DOIUrl":null,"url":null,"abstract":"<div><p>We consider a regular oblique derivative problem for a linear parabolic operator <span><math><mtext>P</mtext></math></span> with VMO principal coefficients. Its unique strong solvability is proved in [15], when <span><math><mtext>P</mtext><mtext>u∈</mtext><mtext>L</mtext><msup><mi></mi><mn>p</mn></msup><mtext>(Q</mtext><msub><mi></mi><mn>T</mn></msub><mtext>)</mtext></math></span>. Our goal here is to show that the solution belongs to the parabolic Morrey space W<sub><em>p</em>,<em>λ</em></sub><sup>2,1</sup>(<em>Q</em><sub><em>T</em></sub>), when <span><math><mtext>P</mtext><mtext>u∈</mtext><mtext>L</mtext><msup><mi></mi><mn>p,λ</mn></msup><mtext>(Q</mtext><msub><mi></mi><mn>T</mn></msub><mtext>)</mtext></math></span>, <em>p</em>∈(1,∞), <em>λ</em>∈(0,<em>n</em>+2), and <em>Q</em><sub><em>T</em></sub> is a cylinder in <span><math><mtext>R</mtext><msub><mi></mi><mn>+</mn></msub><msup><mi></mi><mn>n+1</mn></msup></math></span>. The a priori estimates of the solution are derived through L<sup><em>p</em>,<em>λ</em></sup> estimates for singular and nonsingular integral operators.</p></div>","PeriodicalId":100300,"journal":{"name":"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics","volume":"333 7","pages":"Pages 635-640"},"PeriodicalIF":0.0000,"publicationDate":"2001-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0764-4442(01)02107-3","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comptes Rendus de l'Académie des Sciences - Series I - Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0764444201021073","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
We consider a regular oblique derivative problem for a linear parabolic operator with VMO principal coefficients. Its unique strong solvability is proved in [15], when . Our goal here is to show that the solution belongs to the parabolic Morrey space Wp,λ2,1(QT), when , p∈(1,∞), λ∈(0,n+2), and QT is a cylinder in . The a priori estimates of the solution are derived through Lp,λ estimates for singular and nonsingular integral operators.