Prime Representing Polynomial

IF 1 Q1 MATHEMATICS
Karol Pąk
{"title":"Prime Representing Polynomial","authors":"Karol Pąk","doi":"10.2478/forma-2021-0020","DOIUrl":null,"url":null,"abstract":"Summary The main purpose of formalization is to prove that the set of prime numbers is diophantine, i.e., is representable by a polynomial formula. We formalize this problem, using the Mizar system [1], [2], in two independent ways, proving the existence of a polynomial without formulating it explicitly as well as with its indication. First, we reuse nearly all the techniques invented to prove the MRDP-theorem [11]. Applying a trick with Mizar schemes that go beyond first-order logic we give a short sophisticated proof for the existence of such a polynomial but without formulating it explicitly. Then we formulate the polynomial proposed in [6] that has 26 variables in the Mizar language as follows (w·z+h+j−q)2+((g·k+g+k)·(h+j)+h−z)2+(2 · k3·(2·k+2)·(n + 1)2+1−f2)2+ (p + q + z + 2 · n − e)2 + (e3 · (e + 2) · (a + 1)2 + 1 − o2)2 + (x2 − (a2 −′ 1) · y2 − 1)2 + (16 · (a2 − 1) · r2 · y2 · y2 + 1 − u2)2 + (((a + u2 · (u2 − a))2 − 1) · (n + 4 · d · y)2 + 1 − (x + c · u)2)2 + (m2 − (a2 −′ 1) · l2 − 1)2 + (k + i · (a − 1) − l)2 + (n + l + v − y)2 + (p + l · (a − n − 1) + b · (2 · a · (n + 1) − (n + 1)2 − 1) − m)2 + (q + y · (a − p − 1) + s · (2 · a · (p + 1) − (p + 1)2 − 1) − x)2 + (z + p · l · (a − p) + t · (2 · a · p − p2 − 1) − p · m)2 and we prove that that for any positive integer k so that k + 1 is prime it is necessary and sufficient that there exist other natural variables a-z for which the polynomial equals zero. 26 variables is not the best known result in relation to the set of prime numbers, since any diophantine equation over ℕ can be reduced to one in 13 unknowns [8] or even less [5], [13]. The best currently known result for all prime numbers, where the polynomial is explicitly constructed is 10 [7] or even 7 in the case of Fermat as well as Mersenne prime number [4]. We are currently focusing our formalization efforts in this direction.","PeriodicalId":42667,"journal":{"name":"Formalized Mathematics","volume":"30 2","pages":"221 - 228"},"PeriodicalIF":1.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Formalized Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/forma-2021-0020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

Abstract

Summary The main purpose of formalization is to prove that the set of prime numbers is diophantine, i.e., is representable by a polynomial formula. We formalize this problem, using the Mizar system [1], [2], in two independent ways, proving the existence of a polynomial without formulating it explicitly as well as with its indication. First, we reuse nearly all the techniques invented to prove the MRDP-theorem [11]. Applying a trick with Mizar schemes that go beyond first-order logic we give a short sophisticated proof for the existence of such a polynomial but without formulating it explicitly. Then we formulate the polynomial proposed in [6] that has 26 variables in the Mizar language as follows (w·z+h+j−q)2+((g·k+g+k)·(h+j)+h−z)2+(2 · k3·(2·k+2)·(n + 1)2+1−f2)2+ (p + q + z + 2 · n − e)2 + (e3 · (e + 2) · (a + 1)2 + 1 − o2)2 + (x2 − (a2 −′ 1) · y2 − 1)2 + (16 · (a2 − 1) · r2 · y2 · y2 + 1 − u2)2 + (((a + u2 · (u2 − a))2 − 1) · (n + 4 · d · y)2 + 1 − (x + c · u)2)2 + (m2 − (a2 −′ 1) · l2 − 1)2 + (k + i · (a − 1) − l)2 + (n + l + v − y)2 + (p + l · (a − n − 1) + b · (2 · a · (n + 1) − (n + 1)2 − 1) − m)2 + (q + y · (a − p − 1) + s · (2 · a · (p + 1) − (p + 1)2 − 1) − x)2 + (z + p · l · (a − p) + t · (2 · a · p − p2 − 1) − p · m)2 and we prove that that for any positive integer k so that k + 1 is prime it is necessary and sufficient that there exist other natural variables a-z for which the polynomial equals zero. 26 variables is not the best known result in relation to the set of prime numbers, since any diophantine equation over ℕ can be reduced to one in 13 unknowns [8] or even less [5], [13]. The best currently known result for all prime numbers, where the polynomial is explicitly constructed is 10 [7] or even 7 in the case of Fermat as well as Mersenne prime number [4]. We are currently focusing our formalization efforts in this direction.
表示多项式的素数
形式化的主要目的是证明质数集合是丢番图的,即可以用多项式公式表示。我们利用Mizar系统[1],[2],以两种独立的方式形式化了这个问题,证明了一个多项式的存在性,而不需要显式地表述它以及它的指示。首先,我们重用了几乎所有用来证明mrdp定理的技术。运用超越一阶逻辑的Mizar格式的一个技巧,我们给出了一个简短而复杂的证明,证明了这样一个多项式的存在性,但没有明确地表述它。然后我们制定的多项式在[6]提出26个变量在开阳语言如下(w·z + h + j−q) 2 + ((g·k + g + k)·(h + j) + h−z) 2 +(2·k3 *(2·k + 2) * (n + 1) 2 + 1−f2) 2 + n (p + q + z + 2·−e) 2 + (e3 * (e + 2) *(+ 1) 2 + 1−o2) 2 + (x2−(a2−1)·y2−1)2 + r2(16·(a2−1)···y2 + 1−u2) 2 + (((a + u2·(u2−))2−1)·(n + 4·d·y) 2 + 1−(x + c·u) 2) 2 + (m2−(a2−1)·l2−1)2 + (k + i·(−1)−l) 2 + (n + l + v−y) 2 + (p + l·(n−−1)+ b·(2·a·−(n + 1)(n + 1) 2)−−1 m) 2 + (q + y·p(−−1)+ s·(2··(p + 1)−(p + 1) 2−1)−x) 2 + (z + p·l·(−p) + t·(2··p p2−−1)−p·米)2,我们证明,对任何正整数k, k + 1是质数是必要且充分的存在其他自然变量多项式的a - z = 0。26个变量并不是关于素数集合的最著名的结果,因为任何在n上的丢芬图方程都可以简化为13个未知数中的一个[8],甚至更少[5],[13]。目前已知的所有素数的最佳结果,其中多项式被明确构造为10[7],甚至在费马和梅森素数[4]的情况下为7。我们目前正把正规化工作的重点放在这个方向上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Formalized Mathematics
Formalized Mathematics MATHEMATICS-
自引率
0.00%
发文量
0
审稿时长
10 weeks
期刊介绍: Formalized Mathematics is to be issued quarterly and publishes papers which are abstracts of Mizar articles contributed to the Mizar Mathematical Library (MML) - the basis of a knowledge management system for mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信