Pore Geometry Effect on Si, Trapping and Sor in Tight Carbonate Reservoirs

A. Kayali, S. Koronfol, David Gnozalez
{"title":"Pore Geometry Effect on Si, Trapping and Sor in Tight Carbonate Reservoirs","authors":"A. Kayali, S. Koronfol, David Gnozalez","doi":"10.2523/iptc-22360-ms","DOIUrl":null,"url":null,"abstract":"\n Spontaneous imbibition is one of the key production mechanisms in fractured oil reservoirs. It is also an important process in tight gas formations, which has signi- ficant effects on the gas production after hydraulic fracturing. The objective of this research is to investigate the effects of pore throat sizes and connectivity on spontaneous imbibition behavior in tight carbonate rocks. Many plug samples were selected from various wells in the Middle East. The samples were characterized using X-ray CT imaging, thin-section photomicrographs, Helium porosity and gas permeability. High pressure mercury injection experiments (MICP) were performed in the primary drainage mode to obtain the pore throat size distributions, followed by mercury withdrawal tests to investigate the spontaneous imbibition curve and fluid trapping. The degree of pore connectivity was studied in the samples from thin-section photomicrographs and from primary drainage capillary pressure curves and were found in good relation with the mercury withdrawal behavior and residual fluid saturations. Higher permeability samples were characterized by lower entry pressures that showed higher tendency towards lower fluid (mercury) trapping.\n These results show important link between the rock nature and spontaneous imbibition and fluid trapping that can be deduced from mercury withdraw testing. Accurate prediction of spontaneous imbibition is crucial in many hydrocarbon reservoirs and such analyses help understand production mechanisms in different carbonate rock types.","PeriodicalId":10974,"journal":{"name":"Day 2 Tue, February 22, 2022","volume":"71 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 2 Tue, February 22, 2022","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2523/iptc-22360-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Spontaneous imbibition is one of the key production mechanisms in fractured oil reservoirs. It is also an important process in tight gas formations, which has signi- ficant effects on the gas production after hydraulic fracturing. The objective of this research is to investigate the effects of pore throat sizes and connectivity on spontaneous imbibition behavior in tight carbonate rocks. Many plug samples were selected from various wells in the Middle East. The samples were characterized using X-ray CT imaging, thin-section photomicrographs, Helium porosity and gas permeability. High pressure mercury injection experiments (MICP) were performed in the primary drainage mode to obtain the pore throat size distributions, followed by mercury withdrawal tests to investigate the spontaneous imbibition curve and fluid trapping. The degree of pore connectivity was studied in the samples from thin-section photomicrographs and from primary drainage capillary pressure curves and were found in good relation with the mercury withdrawal behavior and residual fluid saturations. Higher permeability samples were characterized by lower entry pressures that showed higher tendency towards lower fluid (mercury) trapping. These results show important link between the rock nature and spontaneous imbibition and fluid trapping that can be deduced from mercury withdraw testing. Accurate prediction of spontaneous imbibition is crucial in many hydrocarbon reservoirs and such analyses help understand production mechanisms in different carbonate rock types.
致密碳酸盐岩储层孔隙几何形状对Si、圈闭和sr的影响
自吸是裂缝性油藏的重要生产机制之一。这也是致密气藏的一个重要过程,对水力压裂后的产气量有重要影响。本研究的目的是研究致密碳酸盐岩的孔喉尺寸和连通性对自发吸胀行为的影响。从中东的不同井中选择了许多桥塞样品。利用x射线CT成像、薄层显微照片、氦孔隙度和渗透率对样品进行了表征。在第一排水模式下进行高压压汞实验(MICP),获得孔喉尺寸分布,然后进行放汞实验,研究自吸曲线和流体捕获。通过薄层显微照片和原生排水毛细管压力曲线对孔隙连通性进行了研究,发现孔隙连通性与汞提取行为和残余流体饱和度有良好的关系。高渗透率样品的特征是较低的进入压力,显示出较低的流体(汞)捕获趋势。这些结果表明,岩石性质与自吸和流体圈闭之间存在重要联系。在许多油气藏中,准确预测自发渗吸是至关重要的,这种分析有助于了解不同碳酸盐岩类型的生产机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信