A Note on Revised Szeged Index of Graph Operations

IF 1 Q4 CHEMISTRY, MULTIDISCIPLINARY
N. Dehgardi
{"title":"A Note on Revised Szeged Index of Graph Operations","authors":"N. Dehgardi","doi":"10.22052/IJMC.2017.58647.1228","DOIUrl":null,"url":null,"abstract":"Let $G$ be a finite and simple graph with edge set $E(G)$‎. ‎The revised Szeged index is defined as‎ ‎$Sz^{*}(G)=sum_{e=uvin E(G)}(n_u(e|G)+frac{n_{G}(e)}{2})(n_v(e|G)+frac{n_{G}(e)}{2}),$‎ ‎where $n_u(e|G)$ denotes the number of vertices in $G$ lying closer to $u$ than to $v$ and‎ ‎$n_{G}(e)$ is the number of‎ ‎equidistant vertices of $e$ in $G$‎. ‎In this paper‎, ‎we compute the revised Szeged index of the‎ ‎join and corona product of graphs‎.","PeriodicalId":14545,"journal":{"name":"Iranian journal of mathematical chemistry","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2018-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian journal of mathematical chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22052/IJMC.2017.58647.1228","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 6

Abstract

Let $G$ be a finite and simple graph with edge set $E(G)$‎. ‎The revised Szeged index is defined as‎ ‎$Sz^{*}(G)=sum_{e=uvin E(G)}(n_u(e|G)+frac{n_{G}(e)}{2})(n_v(e|G)+frac{n_{G}(e)}{2}),$‎ ‎where $n_u(e|G)$ denotes the number of vertices in $G$ lying closer to $u$ than to $v$ and‎ ‎$n_{G}(e)$ is the number of‎ ‎equidistant vertices of $e$ in $G$‎. ‎In this paper‎, ‎we compute the revised Szeged index of the‎ ‎join and corona product of graphs‎.
关于图运算的修正Szeged索引的注解
设$G$是一个有边集$E(G)$ $的有限简单图。修正后的塞格德指数定义为:$Sz^{*}(G)=sum_{e=uvin e (G)}(n_u(e) |G)+frac{n_{G}(e)}{2})(n_v(e|G))+frac{n_{G}(e)}{2}),其中$n_u(e|G)$表示$G$中离$u$比离$v$近的顶点数,$ n_{G}(e)$表示$G$中离$u$比离$v$近的顶点数,$ $n_{G}(e)$表示$e$在$G$中距离$e$相等的顶点数。在本文中,我们计算了图的连接和电晕积的修正塞格德指数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Iranian journal of mathematical chemistry
Iranian journal of mathematical chemistry CHEMISTRY, MULTIDISCIPLINARY-
CiteScore
2.10
自引率
7.70%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信