Movie recommendation and sentiment analysis using machine learning

N Pavitha , Vithika Pungliya , Ankur Raut , Roshita Bhonsle , Atharva Purohit , Aayushi Patel , R Shashidhar
{"title":"Movie recommendation and sentiment analysis using machine learning","authors":"N Pavitha ,&nbsp;Vithika Pungliya ,&nbsp;Ankur Raut ,&nbsp;Roshita Bhonsle ,&nbsp;Atharva Purohit ,&nbsp;Aayushi Patel ,&nbsp;R Shashidhar","doi":"10.1016/j.gltp.2022.03.012","DOIUrl":null,"url":null,"abstract":"<div><p>In the modern world, where technology is at the forefront of every industry, there has been an overload of information and data. Thus, a recommendation system comes in handy to deal with this large volume of data and filter out the useful information which is fast and relevant to the user's choice. This paper describes an approach to a movie recommendation system using Cosine Similarity to recommend similar movies based on the one chosen by the user. Although the existing recommendation systems get the job done, it does not justify if the movie is worth spending time on. To enhance the user experience, this system performs sentiment analysis on the reviews of the movie chosen using machine learning. Two of the supervised machine learning algorithms Naïve Bayes (NB) Classifier and Support Vector Machine (SVM) Classifier are used to increase the accuracy and efficiency. This paper also gives a comparison between NB and SVM on the basis of parameters like Accuracy, Precision, Recall and F1 Score. The accuracy score of SVM came out to be 98.63% whereas accuracy score of NB is 97.33%. Thus, SVM outweighs NB and proves to be a better fit for Sentiment Analysis.</p></div>","PeriodicalId":100588,"journal":{"name":"Global Transitions Proceedings","volume":"3 1","pages":"Pages 279-284"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666285X22000176/pdfft?md5=91882803ca7268fd2f37aa582145099a&pid=1-s2.0-S2666285X22000176-main.pdf","citationCount":"24","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Transitions Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666285X22000176","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

Abstract

In the modern world, where technology is at the forefront of every industry, there has been an overload of information and data. Thus, a recommendation system comes in handy to deal with this large volume of data and filter out the useful information which is fast and relevant to the user's choice. This paper describes an approach to a movie recommendation system using Cosine Similarity to recommend similar movies based on the one chosen by the user. Although the existing recommendation systems get the job done, it does not justify if the movie is worth spending time on. To enhance the user experience, this system performs sentiment analysis on the reviews of the movie chosen using machine learning. Two of the supervised machine learning algorithms Naïve Bayes (NB) Classifier and Support Vector Machine (SVM) Classifier are used to increase the accuracy and efficiency. This paper also gives a comparison between NB and SVM on the basis of parameters like Accuracy, Precision, Recall and F1 Score. The accuracy score of SVM came out to be 98.63% whereas accuracy score of NB is 97.33%. Thus, SVM outweighs NB and proves to be a better fit for Sentiment Analysis.

使用机器学习的电影推荐和情感分析
在现代世界,技术处于每个行业的最前沿,信息和数据已经过载。因此,推荐系统可以方便地处理大量数据,并快速过滤出与用户选择相关的有用信息。本文描述了一种基于余弦相似度的电影推荐系统的方法,根据用户选择的电影推荐相似的电影。虽然现有的推荐系统完成了这项工作,但它并不能证明这部电影是否值得花时间去看。为了增强用户体验,该系统使用机器学习对所选电影的评论进行情感分析。两种监督机器学习算法Naïve使用贝叶斯(NB)分类器和支持向量机(SVM)分类器来提高准确性和效率。本文还在Accuracy、Precision、Recall、F1 Score等参数的基础上对NB和SVM进行了比较。SVM的准确率得分为98.63%,NB的准确率得分为97.33%。因此,SVM优于NB,更适合于情感分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信