{"title":"Image Texture Based Hybrid Diagnostic Tool for Kidney Disease Classification","authors":"P. Sreelatha, M. Ezhilarasi","doi":"10.1166/jmihi.2018.2527","DOIUrl":null,"url":null,"abstract":"The identification of chronic medical conditions and its associated mortality has led to the emergence of less invasive methods for medical diagnostic imaging. This work proposes a Computer Aided Diagnostic tool useful in automatic classification of kidney images as normal, simple cysts,\n kidney stones and the less investigated complex cystic renal cell carcinoma. The first part of the work investigates an effective despeckling algorithm with a proposed adaptive wavelet based denoising technique. Encouraging increased PSNR values ranging from 15 dB to 24 dB were obtained. Second\n part of work suggests a set of wavelet coefficient based feature set which showed a classification accuracy of 92.2%, better by 20.3% to 0.8% against existing methods. The final part of the work to develop a complete tool for kidney image classification combines the proposed wavelet based\n features with three existing statistical based feature sets yielded a classification accuracy of 96.9%. The suggested features were extracted from the region of interest from an image set. A reduced feature set of 18 from the original size of 163 was obtained using principal component analysis\n and applied for training a support vector machine classifier.","PeriodicalId":49032,"journal":{"name":"Journal of Medical Imaging and Health Informatics","volume":"1 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Imaging and Health Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1166/jmihi.2018.2527","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
The identification of chronic medical conditions and its associated mortality has led to the emergence of less invasive methods for medical diagnostic imaging. This work proposes a Computer Aided Diagnostic tool useful in automatic classification of kidney images as normal, simple cysts,
kidney stones and the less investigated complex cystic renal cell carcinoma. The first part of the work investigates an effective despeckling algorithm with a proposed adaptive wavelet based denoising technique. Encouraging increased PSNR values ranging from 15 dB to 24 dB were obtained. Second
part of work suggests a set of wavelet coefficient based feature set which showed a classification accuracy of 92.2%, better by 20.3% to 0.8% against existing methods. The final part of the work to develop a complete tool for kidney image classification combines the proposed wavelet based
features with three existing statistical based feature sets yielded a classification accuracy of 96.9%. The suggested features were extracted from the region of interest from an image set. A reduced feature set of 18 from the original size of 163 was obtained using principal component analysis
and applied for training a support vector machine classifier.
期刊介绍:
Journal of Medical Imaging and Health Informatics (JMIHI) is a medium to disseminate novel experimental and theoretical research results in the field of biomedicine, biology, clinical, rehabilitation engineering, medical image processing, bio-computing, D2H2, and other health related areas. As an example, the Distributed Diagnosis and Home Healthcare (D2H2) aims to improve the quality of patient care and patient wellness by transforming the delivery of healthcare from a central, hospital-based system to one that is more distributed and home-based. Different medical imaging modalities used for extraction of information from MRI, CT, ultrasound, X-ray, thermal, molecular and fusion of its techniques is the focus of this journal.