{"title":"High Parallel Complexity Graphs and Memory-Hard Functions","authors":"J. Alwen, Vladimir Serbinenko","doi":"10.1145/2746539.2746622","DOIUrl":null,"url":null,"abstract":"We develop new theoretical tools for proving lower-bounds on the (amortized) complexity of certain functions in models of parallel computation. We apply the tools to construct a class of functions with high amortized memory complexity in the *parallel* Random Oracle Model (pROM); a variant of the standard ROM allowing for batches of *simultaneous* queries. In particular we obtain a new, more robust, type of Memory-Hard Functions (MHF); a security primitive which has recently been gaining acceptance in practice as an effective means of countering brute-force attacks on security relevant functions. Along the way we also demonstrate an important shortcoming of previous definitions of MHFs and give a new definition addressing the problem. The tools we develop represent an adaptation of the powerful pebbling paradigm (initially introduced by Hewitt and Paterson [HP70] and Cook [Coo73]) to a simple and intuitive parallel setting. We define a simple pebbling game Gp over graphs which aims to abstract parallel computation in an intuitive way. As a conceptual contribution we define a measure of pebbling complexity for graphs called *cumulative complexity* (CC) and show how it overcomes a crucial shortcoming (in the parallel setting) exhibited by more traditional complexity measures used in the past. As a main technical contribution we give an explicit construction of a constant in-degree family of graphs whose CC in Gp approaches maximality to within a polylogarithmic factor for any graph of equal size (analogous to the graphs of Tarjan et. al. [PTC76, LT82] for sequential pebbling games). Finally, for a given graph G and related function fG, we derive a lower-bound on the amortized memory complexity of fG in the pROM in terms of the CC of G in the game Gp.","PeriodicalId":20566,"journal":{"name":"Proceedings of the forty-seventh annual ACM symposium on Theory of Computing","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2015-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"84","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the forty-seventh annual ACM symposium on Theory of Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2746539.2746622","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 84
Abstract
We develop new theoretical tools for proving lower-bounds on the (amortized) complexity of certain functions in models of parallel computation. We apply the tools to construct a class of functions with high amortized memory complexity in the *parallel* Random Oracle Model (pROM); a variant of the standard ROM allowing for batches of *simultaneous* queries. In particular we obtain a new, more robust, type of Memory-Hard Functions (MHF); a security primitive which has recently been gaining acceptance in practice as an effective means of countering brute-force attacks on security relevant functions. Along the way we also demonstrate an important shortcoming of previous definitions of MHFs and give a new definition addressing the problem. The tools we develop represent an adaptation of the powerful pebbling paradigm (initially introduced by Hewitt and Paterson [HP70] and Cook [Coo73]) to a simple and intuitive parallel setting. We define a simple pebbling game Gp over graphs which aims to abstract parallel computation in an intuitive way. As a conceptual contribution we define a measure of pebbling complexity for graphs called *cumulative complexity* (CC) and show how it overcomes a crucial shortcoming (in the parallel setting) exhibited by more traditional complexity measures used in the past. As a main technical contribution we give an explicit construction of a constant in-degree family of graphs whose CC in Gp approaches maximality to within a polylogarithmic factor for any graph of equal size (analogous to the graphs of Tarjan et. al. [PTC76, LT82] for sequential pebbling games). Finally, for a given graph G and related function fG, we derive a lower-bound on the amortized memory complexity of fG in the pROM in terms of the CC of G in the game Gp.