CONVERGENCE OF ADAPTIVE EXTRA-PROXIMAL ALGORITHMS FOR EQUILIBRIUM PROBLEMS IN HADAMARD SPACES

IF 0.1
V. Semenov, Yana Vedel, S. Denisov
{"title":"CONVERGENCE OF ADAPTIVE EXTRA-PROXIMAL ALGORITHMS FOR EQUILIBRIUM PROBLEMS IN HADAMARD SPACES","authors":"V. Semenov, Yana Vedel, S. Denisov","doi":"10.17721/2706-9699.2022.1.05","DOIUrl":null,"url":null,"abstract":"New iterative extra-proximal algorithms have been pro\\-posed and investigated for approximate solution of problems of equilibrium in Hadamard metric spaces. The para\\-meter update rule does not use the values of the Lipschitz constants of the bifunction. In contrast to the rules of the linear search type, it does not require calculations of the bifunction values at additional points. In addition, at the initial stages of the algorithms, the step size parameter can increase from iteration to iteration. For pseudo-monotone bifunctions of the Lipschitz type we proved convergence theorems. It is shown that the proposed algorithms are applicable to pseudo-monotone variational inequalities in Hilbert spaces.","PeriodicalId":40347,"journal":{"name":"Journal of Numerical and Applied Mathematics","volume":"4 3","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Numerical and Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17721/2706-9699.2022.1.05","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

New iterative extra-proximal algorithms have been pro\-posed and investigated for approximate solution of problems of equilibrium in Hadamard metric spaces. The para\-meter update rule does not use the values of the Lipschitz constants of the bifunction. In contrast to the rules of the linear search type, it does not require calculations of the bifunction values at additional points. In addition, at the initial stages of the algorithms, the step size parameter can increase from iteration to iteration. For pseudo-monotone bifunctions of the Lipschitz type we proved convergence theorems. It is shown that the proposed algorithms are applicable to pseudo-monotone variational inequalities in Hilbert spaces.
hadamard空间平衡问题的自适应超近端算法的收敛性
提出并研究了Hadamard度量空间中平衡问题近似解的新的迭代超近邻算法。para -meter更新规则不使用双函数的Lipschitz常数的值。与线性搜索类型的规则相反,它不需要计算附加点的双函数值。此外,在算法的初始阶段,步长参数可以随着迭代而增加。对于Lipschitz型伪单调双函数,我们证明了收敛定理。结果表明,所提算法适用于Hilbert空间中的伪单调变分不等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信