Learning to find naming issues with big code and small supervision

Jingxuan He, Cheng-Chun Lee, Veselin Raychev, Martin T. Vechev
{"title":"Learning to find naming issues with big code and small supervision","authors":"Jingxuan He, Cheng-Chun Lee, Veselin Raychev, Martin T. Vechev","doi":"10.1145/3453483.3454045","DOIUrl":null,"url":null,"abstract":"We introduce a new approach for finding and fixing naming issues in source code. The method is based on a careful combination of unsupervised and supervised procedures: (i) unsupervised mining of patterns from Big Code that express common naming idioms. Program fragments violating such idioms indicates likely naming issues, and (ii) supervised learning of a classifier on a small labeled dataset which filters potential false positives from the violations. We implemented our method in a system called Namer and evaluated it on a large number of Python and Java programs. We demonstrate that Namer is effective in finding naming mistakes in real world repositories with high precision (~70%). Perhaps surprisingly, we also show that existing deep learning methods are not practically effective and achieve low precision in finding naming issues (up to ~16%).","PeriodicalId":20557,"journal":{"name":"Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language Design and Implementation","volume":"64 2-3","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 42nd ACM SIGPLAN International Conference on Programming Language Design and Implementation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3453483.3454045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

We introduce a new approach for finding and fixing naming issues in source code. The method is based on a careful combination of unsupervised and supervised procedures: (i) unsupervised mining of patterns from Big Code that express common naming idioms. Program fragments violating such idioms indicates likely naming issues, and (ii) supervised learning of a classifier on a small labeled dataset which filters potential false positives from the violations. We implemented our method in a system called Namer and evaluated it on a large number of Python and Java programs. We demonstrate that Namer is effective in finding naming mistakes in real world repositories with high precision (~70%). Perhaps surprisingly, we also show that existing deep learning methods are not practically effective and achieve low precision in finding naming issues (up to ~16%).
学习用大代码和小监督发现命名问题
我们引入了一种新的方法来查找和修复源代码中的命名问题。该方法基于无监督和有监督过程的精心结合:(i)从表达常用命名习惯的Big Code中无监督地挖掘模式。违反这些习惯用法的程序片段表明可能存在命名问题,并且(ii)在一个小的标记数据集上对分类器进行监督学习,该数据集可以从违规中过滤潜在的误报。我们在一个名为Namer的系统中实现了我们的方法,并在大量Python和Java程序中对其进行了评估。我们证明了Namer能够有效地在现实世界的存储库中以很高的精度(~70%)发现命名错误。也许令人惊讶的是,我们还表明,现有的深度学习方法实际上并不有效,并且在发现命名问题方面达到了低精度(高达16%)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信