Reductive subalgebras of semisimple Lie algebras and Poisson commutativity

Pub Date : 2020-12-07 DOI:10.4310/jsg.2022.v20.n4.a4
D. Panyushev, O. Yakimova
{"title":"Reductive subalgebras of semisimple Lie algebras and Poisson commutativity","authors":"D. Panyushev, O. Yakimova","doi":"10.4310/jsg.2022.v20.n4.a4","DOIUrl":null,"url":null,"abstract":"Let $\\mathfrak g$ be a semisimple Lie algebra, $\\mathfrak h\\subset\\mathfrak g$ a reductive subalgebra such that $\\mathfrak h^\\perp$ is a complementary $\\mathfrak h$-submodule of $\\mathfrak g$. In 1983, Bogoyavlenski claimed that one obtains a Poisson commutative subalgebra of the symmetric algebra ${\\mathcal S}(\\mathfrak g)$ by taking the subalgebra ${\\mathcal Z}$ generated by the bi-homogeneous components of all $H\\in{\\mathcal S}(\\mathfrak g)^{\\mathfrak g}$. But this is false, and we present a counterexample. We also provide a criterion for the Poisson commutativity of such subalgebras ${\\mathcal Z}$. As a by-product, we prove that ${\\mathcal Z}$ is Poisson commutative if $\\mathfrak h$ is abelian and describe ${\\mathcal Z}$ in the special case when $\\mathfrak h$ is a Cartan subalgebra. In this case, ${\\mathcal Z}$ appears to be polynomial and has the maximal transcendence degree $(\\mathrm{dim}\\,\\mathfrak g+\\mathrm{rk}\\,\\mathfrak g)/2$.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2020-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/jsg.2022.v20.n4.a4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Let $\mathfrak g$ be a semisimple Lie algebra, $\mathfrak h\subset\mathfrak g$ a reductive subalgebra such that $\mathfrak h^\perp$ is a complementary $\mathfrak h$-submodule of $\mathfrak g$. In 1983, Bogoyavlenski claimed that one obtains a Poisson commutative subalgebra of the symmetric algebra ${\mathcal S}(\mathfrak g)$ by taking the subalgebra ${\mathcal Z}$ generated by the bi-homogeneous components of all $H\in{\mathcal S}(\mathfrak g)^{\mathfrak g}$. But this is false, and we present a counterexample. We also provide a criterion for the Poisson commutativity of such subalgebras ${\mathcal Z}$. As a by-product, we prove that ${\mathcal Z}$ is Poisson commutative if $\mathfrak h$ is abelian and describe ${\mathcal Z}$ in the special case when $\mathfrak h$ is a Cartan subalgebra. In this case, ${\mathcal Z}$ appears to be polynomial and has the maximal transcendence degree $(\mathrm{dim}\,\mathfrak g+\mathrm{rk}\,\mathfrak g)/2$.
分享
查看原文
半单李代数的约化子代数与泊松交换性
设$\mathfrak g$是一个半简单李代数,$\mathfrak h\子集$ mathfrak g$是一个约化子代数,使得$\mathfrak h^\perp$是$\mathfrak g$的补$\mathfrak h$-子模块。1983年,Bogoyavlenski声称,通过取所有$H\ In {\mathcal S}(\mathfrak g)^{\mathfrak g}$的双齐次分量所生成的子代数${\mathcal Z}$,可以得到对称代数${\ mathfrak S}(\mathfrak g)$的一个Poisson交换子代数。但这是错误的,我们提出一个反例。我们也给出了这类子代数的泊松交换性的一个判据。作为副产物,我们证明了如果$\mathfrak h$是阿贝尔的,则${\ mathfrak Z}$是泊松交换的,并且在$\mathfrak h$是Cartan子代数的特殊情况下描述了${\ mathfrak Z}$。在这种情况下,${\mathcal Z}$似乎是一个多项式,并且具有最大超越度$(\ mathm {dim}\,\mathfrak g+\ mathm {rk}\,\mathfrak g)/2$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信