Neural Network-based Inter-crystal Scatter Event Positioning in a PET System Design Based on 3D Position Sensitive Detectors

C. Wu, M. S. Lee, C. Levin
{"title":"Neural Network-based Inter-crystal Scatter Event Positioning in a PET System Design Based on 3D Position Sensitive Detectors","authors":"C. Wu, M. S. Lee, C. Levin","doi":"10.1109/NSS/MIC42677.2020.9507821","DOIUrl":null,"url":null,"abstract":"We demonstrate a simulation-based proof-of-concept for superior inter-crystal scatter (ICS) event positioning using a feed-forward neural network (NN) architecture compared to traditional winner-takes-all (WTA) and loser-takes-all (LTA) algorithms. Using a GATE Monte Carlo simulation of a 3D position-sensitive scintillation detector module comprising long crystals read out from the side using SiPMs with 3×3×3 mm3 effective detector voxels, we observe NN ICS event positioning accuracies of 0.753 to 0.680 when the number of interactions per annihilation photon ranges from 2 to 5: significantly more robust compared to 0.726 to 0.367 for LTA and 0.613 to 0.251 for WTA methods over the same range. We then scale the single-detector simulation into a 25 cm diameter PET brain imaging system and reconstruct contrast and resolution phantoms for image quality analysis. The NN model outperformed both WTA and LTA, with image normalized Mean Absolute Errors of 0.030 and 0.122 for contrast and resolution phantoms compared to 0.046, 0.178 and 0.034, 0.140 for WTA and LTA. The NN demonstrated 6.04 to 8.95% higher Contrast Recovery (from resolution phantom), 0.53 to 2.85% larger Contrast Noise Ratio (from contrast phantom), and 2.13 to 6.34% higher Modulation Transfer Function values (from resolution phantom) compared to LTA, which performed second-best. The upper bound for these NN relative improvements occurred with features near the spatial resolution limit of the simulated system (2 mm). Our results indicate the NN positioning approach we examined improves most image quality and quantitation figures of merit.","PeriodicalId":6760,"journal":{"name":"2020 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC)","volume":"33 4","pages":"1-3"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NSS/MIC42677.2020.9507821","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We demonstrate a simulation-based proof-of-concept for superior inter-crystal scatter (ICS) event positioning using a feed-forward neural network (NN) architecture compared to traditional winner-takes-all (WTA) and loser-takes-all (LTA) algorithms. Using a GATE Monte Carlo simulation of a 3D position-sensitive scintillation detector module comprising long crystals read out from the side using SiPMs with 3×3×3 mm3 effective detector voxels, we observe NN ICS event positioning accuracies of 0.753 to 0.680 when the number of interactions per annihilation photon ranges from 2 to 5: significantly more robust compared to 0.726 to 0.367 for LTA and 0.613 to 0.251 for WTA methods over the same range. We then scale the single-detector simulation into a 25 cm diameter PET brain imaging system and reconstruct contrast and resolution phantoms for image quality analysis. The NN model outperformed both WTA and LTA, with image normalized Mean Absolute Errors of 0.030 and 0.122 for contrast and resolution phantoms compared to 0.046, 0.178 and 0.034, 0.140 for WTA and LTA. The NN demonstrated 6.04 to 8.95% higher Contrast Recovery (from resolution phantom), 0.53 to 2.85% larger Contrast Noise Ratio (from contrast phantom), and 2.13 to 6.34% higher Modulation Transfer Function values (from resolution phantom) compared to LTA, which performed second-best. The upper bound for these NN relative improvements occurred with features near the spatial resolution limit of the simulated system (2 mm). Our results indicate the NN positioning approach we examined improves most image quality and quantitation figures of merit.
基于三维位置敏感探测器的PET系统设计中基于神经网络的晶体间散射事件定位
与传统的赢者通吃(WTA)和输者通吃(LTA)算法相比,我们使用前馈神经网络(NN)架构演示了基于仿真的优越晶间散射(ICS)事件定位的概念验证。利用GATE蒙特卡罗模拟了一个三维位置敏感闪烁探测器模块,该模块由使用具有3×3×3 mm3有效探测器体素的SiPMs从侧面读取的长晶体组成,我们观察到,当每个湮灭光子的相互作用数量范围为2到5时,NN ICS事件定位精度为0.753到0.680,与LTA方法的0.726到0.367和WTA方法的0.613到0.251相比,在相同范围内具有更强的鲁棒性。然后,我们将单探测器模拟扩展到直径为25厘米的PET脑成像系统中,并重建对比度和分辨率幻象,用于图像质量分析。NN模型的表现优于WTA和LTA,对比度和分辨率的图像归一化平均绝对误差分别为0.030和0.122,而WTA和LTA的图像归一化平均绝对误差分别为0.046、0.178和0.034、0.140。与表现第二好的LTA相比,该NN的对比度恢复(来自分辨率幻影)高出6.04至8.95%,对比度噪声比(来自对比度幻影)高出0.53至2.85%,调制传递函数值(来自分辨率幻影)高出2.13至6.34%。这些神经网络相对改进的上界发生在接近模拟系统空间分辨率极限(2mm)的特征上。我们的结果表明,我们研究的神经网络定位方法提高了大多数图像质量和量化指标。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信