E. Guardo, M. Kreuzer, Tran N. K. Linh, L. N. Long
{"title":"Kähler Differentials for Fat Point Schemes in ℙ1×ℙ1","authors":"E. Guardo, M. Kreuzer, Tran N. K. Linh, L. N. Long","doi":"10.1216/jca.2021.13.179","DOIUrl":null,"url":null,"abstract":"Let 𝕏 be a set of K-rational points in ℙ1×ℙ1 over a field K of characteristic zero, let 𝕐 be a fat point scheme supported at 𝕏, and let R𝕐 be the bihomogeneous coordinate ring of 𝕐. In this paper we investigate the module of Kahler differentials ΩR𝕐∕K1. We describe this bigraded R𝕐-module explicitly via a homogeneous short exact sequence and compute its Hilbert function in a number of special cases, in particular when the support 𝕏 is a complete intersection or an almost complete intersection in ℙ1×ℙ1. Moreover, we introduce a Kahler different for 𝕐 and use it to characterize ACM reduced schemes in ℙ1×ℙ1 having the Cayley–Bacharach property.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1216/jca.2021.13.179","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Let 𝕏 be a set of K-rational points in ℙ1×ℙ1 over a field K of characteristic zero, let 𝕐 be a fat point scheme supported at 𝕏, and let R𝕐 be the bihomogeneous coordinate ring of 𝕐. In this paper we investigate the module of Kahler differentials ΩR𝕐∕K1. We describe this bigraded R𝕐-module explicitly via a homogeneous short exact sequence and compute its Hilbert function in a number of special cases, in particular when the support 𝕏 is a complete intersection or an almost complete intersection in ℙ1×ℙ1. Moreover, we introduce a Kahler different for 𝕐 and use it to characterize ACM reduced schemes in ℙ1×ℙ1 having the Cayley–Bacharach property.