Spectral and Discriminant Analysis Based Classification of Faults in Induction Machines

Rahul R. Kumar, A. Tortella, M. Andriollo
{"title":"Spectral and Discriminant Analysis Based Classification of Faults in Induction Machines","authors":"Rahul R. Kumar, A. Tortella, M. Andriollo","doi":"10.23919/AEIT50178.2020.9241115","DOIUrl":null,"url":null,"abstract":"This paper presents a new condition indicator for classifying of stator and rotor related faults in induction motors. It relies on the characteristic fault frequencies of the motor in question and can be extended to different types of motors with different magnetic structures. The proposed method, occupied band-power ratio, focuses on the power concentration of the characteristics fault frequencies and yields the final result as a unit-less quantity. Features developed using this method are studied using linear data explanatory tools and further optimized with Discriminant Analysis for classification. The efficacy of the proposed method is validated experimentally by using grid and inverter fed induction motors.","PeriodicalId":6689,"journal":{"name":"2020 AEIT International Annual Conference (AEIT)","volume":"129 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 AEIT International Annual Conference (AEIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/AEIT50178.2020.9241115","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper presents a new condition indicator for classifying of stator and rotor related faults in induction motors. It relies on the characteristic fault frequencies of the motor in question and can be extended to different types of motors with different magnetic structures. The proposed method, occupied band-power ratio, focuses on the power concentration of the characteristics fault frequencies and yields the final result as a unit-less quantity. Features developed using this method are studied using linear data explanatory tools and further optimized with Discriminant Analysis for classification. The efficacy of the proposed method is validated experimentally by using grid and inverter fed induction motors.
基于谱和判别分析的感应电机故障分类
提出了一种用于异步电动机定子和转子相关故障分类的新型状态指示器。它依赖于所讨论的电机的特征故障频率,并且可以扩展到具有不同磁性结构的不同类型的电机。所提出的占带功率比方法侧重于特征故障频率的功率集中,并以无单位量的形式给出最终结果。利用该方法开发的特征使用线性数据解释工具进行研究,并进一步使用判别分析进行分类优化。通过电网和逆变式异步电机的实验验证了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信