Maicon Douglas Santos Matos, Laurence Rodrigues do Amaral
{"title":"Multiple Disjunctions Rule Genetic Algorithm (MDRGA): Inferring Non-Linear IF-THEN Rules in Non-Linear Datasets","authors":"Maicon Douglas Santos Matos, Laurence Rodrigues do Amaral","doi":"10.1109/CEC.2018.8477690","DOIUrl":null,"url":null,"abstract":"Genetic Algorithms (GAs) are computational search methods based on Darwin's evolutionary theory. In the present study, the MDRGA (Multiple Disjunctions Rule Genetic Algorithm) is proposed as a tool to induce non-linear IF-THEN classification rules from non-linear datasets, which can be used as a classification system. The main goal of MDRGA is to allow the discovery of concise, yet accurate, non-linear high-level IF-THEN rules balancing prediction precision, comprehensibility and interpretability. The results show that the MDRGA is promising and capable of extracting useful high-level knowledge with good precision values. The classification accuracy of proposed MDRGA was compared with other GA-based methods (CEE and NLCEE) and traditional classification methods (J48, Random Forest, PART, Naive Bayes and IBK) in four non-linear datasets (Sonar, Diabetes, Iris and Breast-W) downloaded from UCI Machine Learning Repository and the MDRGA obtained the best classification accuracy results for all datasets.","PeriodicalId":6344,"journal":{"name":"2009 IEEE Congress on Evolutionary Computation","volume":"107 4","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Congress on Evolutionary Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEC.2018.8477690","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Genetic Algorithms (GAs) are computational search methods based on Darwin's evolutionary theory. In the present study, the MDRGA (Multiple Disjunctions Rule Genetic Algorithm) is proposed as a tool to induce non-linear IF-THEN classification rules from non-linear datasets, which can be used as a classification system. The main goal of MDRGA is to allow the discovery of concise, yet accurate, non-linear high-level IF-THEN rules balancing prediction precision, comprehensibility and interpretability. The results show that the MDRGA is promising and capable of extracting useful high-level knowledge with good precision values. The classification accuracy of proposed MDRGA was compared with other GA-based methods (CEE and NLCEE) and traditional classification methods (J48, Random Forest, PART, Naive Bayes and IBK) in four non-linear datasets (Sonar, Diabetes, Iris and Breast-W) downloaded from UCI Machine Learning Repository and the MDRGA obtained the best classification accuracy results for all datasets.