Static analysis of Java enterprise applications: frameworks and caches, the elephants in the room

A. Antoniadis, Nikos Filippakis, Paddy Krishnan, R. Ramesh, N. Allen, Y. Smaragdakis
{"title":"Static analysis of Java enterprise applications: frameworks and caches, the elephants in the room","authors":"A. Antoniadis, Nikos Filippakis, Paddy Krishnan, R. Ramesh, N. Allen, Y. Smaragdakis","doi":"10.1145/3385412.3386026","DOIUrl":null,"url":null,"abstract":"Enterprise applications are a major success domain of Java, and Java is the default setting for much modern static analysis research. It would stand to reason that high-quality static analysis of Java enterprise applications would be commonplace, but this is far from true. Major analysis frameworks feature virtually no support for enterprise applications and offer analyses that are woefully incomplete and vastly imprecise, when at all scalable. In this work, we present two techniques for drastically enhancing the completeness and precision of static analysis for Java enterprise applications. The first technique identifies domain-specific concepts underlying all enterprise application frameworks, captures them in an extensible, declarative form, and achieves modeling of components and entry points in a largely framework-independent way. The second technique offers precision and scalability via a sound-modulo-analysis modeling of standard data structures. In realistic enterprise applications (an order of magnitude larger than prior benchmarks in the literature) our techniques achieve high degrees of completeness (on average more than 4x higher than conventional techniques) and speedups of about 6x compared to the most precise conventional analysis, with higher precision on multiple metrics. The result is JackEE, an enterprise analysis framework that can offer precise, high-completeness static modeling of realistic enterprise applications.","PeriodicalId":20580,"journal":{"name":"Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design and Implementation","volume":"165 9","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design and Implementation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3385412.3386026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

Enterprise applications are a major success domain of Java, and Java is the default setting for much modern static analysis research. It would stand to reason that high-quality static analysis of Java enterprise applications would be commonplace, but this is far from true. Major analysis frameworks feature virtually no support for enterprise applications and offer analyses that are woefully incomplete and vastly imprecise, when at all scalable. In this work, we present two techniques for drastically enhancing the completeness and precision of static analysis for Java enterprise applications. The first technique identifies domain-specific concepts underlying all enterprise application frameworks, captures them in an extensible, declarative form, and achieves modeling of components and entry points in a largely framework-independent way. The second technique offers precision and scalability via a sound-modulo-analysis modeling of standard data structures. In realistic enterprise applications (an order of magnitude larger than prior benchmarks in the literature) our techniques achieve high degrees of completeness (on average more than 4x higher than conventional techniques) and speedups of about 6x compared to the most precise conventional analysis, with higher precision on multiple metrics. The result is JackEE, an enterprise analysis framework that can offer precise, high-completeness static modeling of realistic enterprise applications.
Java企业应用的静态分析:框架和缓存,房间里的大象
企业应用程序是Java的主要成功领域,Java是许多现代静态分析研究的默认设置。按理说,Java企业应用程序的高质量静态分析将是司空见惯的,但事实远非如此。主要的分析框架实际上不支持企业应用程序,并且提供的分析非常不完整,而且非常不精确,而且完全可以伸缩。在这项工作中,我们提出了两种技术,可以极大地提高Java企业应用程序静态分析的完整性和准确性。第一种技术确定所有企业应用程序框架下的领域特定概念,以可扩展的声明式形式捕获它们,并以一种很大程度上独立于框架的方式实现组件和入口点的建模。第二种技术通过对标准数据结构进行健全的模分析建模,提供了精确性和可伸缩性。在实际的企业应用程序中(比文献中先前的基准测试大一个数量级),我们的技术实现了高度的完整性(平均比传统技术高出4倍以上),并且与最精确的传统分析相比,速度提高了约6倍,在多个指标上具有更高的精度。其结果是jackie,这是一个企业分析框架,可以为实际的企业应用程序提供精确的、高完整性的静态建模。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信