Finite-temperature symmetric tensor network for spin-1/2 Heisenberg antiferromagnets on the square lattice

D. Poilblanc, M. Mambrini, F. Alet
{"title":"Finite-temperature symmetric tensor network for spin-1/2 Heisenberg antiferromagnets on the square lattice","authors":"D. Poilblanc, M. Mambrini, F. Alet","doi":"10.21468/SCIPOSTPHYS.10.1.019","DOIUrl":null,"url":null,"abstract":"Within the tensor network framework, the (positive) thermal density operator can be approximated by a double layer of infinite Projected Entangled Pair Operator (iPEPO) coupled via ancilla degrees of freedom. To investigate the thermal properties of the spin-1/2 Heisenberg model on the square lattice, we introduce a family of fully spin-$SU(2)$ and lattice-$C_{4v}$ symmetric on-site tensors (of bond dimensions $D=4$ or $D=7$) and a plaquette-based Trotter-Suzuki decomposition of the imaginary-time evolution operator. A variational optimization is performed on the plaquettes, using a full (for $D=4$) or simple (for $D=7$) environment obtained from the single-site Corner Transfer Matrix Renormalization Group fixed point. The method is benchmarked by a comparison to quantum Monte Carlo in the thermodynamic limit. Although the iPEPO spin correlation length starts to deviate from the exact exponential growth for inverse-temperature $\\beta \\gtrsim 2$, the behavior of various observables turns out to be quite accurate once plotted w.r.t the inverse correlation length. We also find that a direct $T=0$ variational energy optimization provides results in full agreement with the $\\beta\\rightarrow\\infty$ limit of finite-temperature data, hence validating the imaginary-time evolution procedure. Extension of the method to frustrated models is described and preliminary results are shown.","PeriodicalId":8511,"journal":{"name":"arXiv: Strongly Correlated Electrons","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv: Strongly Correlated Electrons","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21468/SCIPOSTPHYS.10.1.019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

Within the tensor network framework, the (positive) thermal density operator can be approximated by a double layer of infinite Projected Entangled Pair Operator (iPEPO) coupled via ancilla degrees of freedom. To investigate the thermal properties of the spin-1/2 Heisenberg model on the square lattice, we introduce a family of fully spin-$SU(2)$ and lattice-$C_{4v}$ symmetric on-site tensors (of bond dimensions $D=4$ or $D=7$) and a plaquette-based Trotter-Suzuki decomposition of the imaginary-time evolution operator. A variational optimization is performed on the plaquettes, using a full (for $D=4$) or simple (for $D=7$) environment obtained from the single-site Corner Transfer Matrix Renormalization Group fixed point. The method is benchmarked by a comparison to quantum Monte Carlo in the thermodynamic limit. Although the iPEPO spin correlation length starts to deviate from the exact exponential growth for inverse-temperature $\beta \gtrsim 2$, the behavior of various observables turns out to be quite accurate once plotted w.r.t the inverse correlation length. We also find that a direct $T=0$ variational energy optimization provides results in full agreement with the $\beta\rightarrow\infty$ limit of finite-temperature data, hence validating the imaginary-time evolution procedure. Extension of the method to frustrated models is described and preliminary results are shown.
方形晶格上自旋1/2海森堡反铁磁体的有限温度对称张量网络
在张量网络框架内,(正)热密度算子可以用通过辅助自由度耦合的无限投影纠缠对算子(iPEPO)的双层来近似。为了研究方形晶格上自旋-1/2海森堡模型的热性质,我们引入了一组完全自旋- $SU(2)$和晶格- $C_{4v}$对称的现场张量(键维为$D=4$或$D=7$)和基于空泡的虚时间演化算子的Trotter-Suzuki分解。对斑块进行变分优化,使用从单站点角转移矩阵重整化组固定点获得的完整(对于$D=4$)或简单(对于$D=7$)环境。该方法在热力学极限下与量子蒙特卡罗进行了比较。虽然iPEPO自旋相关长度开始偏离逆温度$\beta \gtrsim 2$的确切指数增长,但一旦绘制逆相关长度,各种可观测值的行为就变得相当准确。我们还发现,直接$T=0$变分能量优化提供的结果完全符合$\beta\rightarrow\infty$有限温度数据的极限,从而验证了虚时间演化过程。将该方法推广到受挫模型,并给出了初步结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信