{"title":"Sign-Changing Solutions for Kirchhoff-Type Problems with Variable Exponent","authors":"Changmu Chu, Ying Yu","doi":"10.1155/2023/6210890","DOIUrl":null,"url":null,"abstract":"This paper is devoted to study a class of Kirchhoff-type problems with variable exponent. By means of the perturbation technique, the method of invariant sets for the descending flow and necessary estimates and the existence of infinitely many sign-changing solutions to this problem are obtained.","PeriodicalId":43667,"journal":{"name":"Muenster Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2023-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Muenster Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/6210890","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper is devoted to study a class of Kirchhoff-type problems with variable exponent. By means of the perturbation technique, the method of invariant sets for the descending flow and necessary estimates and the existence of infinitely many sign-changing solutions to this problem are obtained.