{"title":"Spectral theory of regular sequences","authors":"M. Coons, James Evans, Neil Mañibo","doi":"10.4171/dm/880","DOIUrl":null,"url":null,"abstract":"Regular sequences are natural generalisations of fixed points of constant-length substitutions on finite alphabets, that is, of automatic sequences. Using the harmonic analysis of measures associated with substitutions as motivation, we study the limiting asymptotics of regular sequences by constructing a systematic measure-theoretic framework surrounding them. The constructed measures are generalisations of mass distributions supported on attractors of iterated function systems.","PeriodicalId":50567,"journal":{"name":"Documenta Mathematica","volume":"186 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2020-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Documenta Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/dm/880","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3
Abstract
Regular sequences are natural generalisations of fixed points of constant-length substitutions on finite alphabets, that is, of automatic sequences. Using the harmonic analysis of measures associated with substitutions as motivation, we study the limiting asymptotics of regular sequences by constructing a systematic measure-theoretic framework surrounding them. The constructed measures are generalisations of mass distributions supported on attractors of iterated function systems.
期刊介绍:
DOCUMENTA MATHEMATICA is open to all mathematical fields und internationally oriented
Documenta Mathematica publishes excellent and carefully refereed articles of general interest, which preferably should rely only on refereed sources and references.