Local minima of dissonance functions

IF 0.5 2区 数学 Q4 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
D. Mukherjee
{"title":"Local minima of dissonance functions","authors":"D. Mukherjee","doi":"10.1080/17459737.2021.1882600","DOIUrl":null,"url":null,"abstract":"When the same sound is produced simultaneously with two different fundamental frequencies, auditory roughness is observed. If the first sound is fixed and the fundamental frequency of the second is varied continuously, auditory roughness also varies continuously. A vowel sound is distinguished by its spectral envelope – which is independent of the fundamental frequency. This is a motivation to define the metric space of timbres. Each timbre is associated with a dissonance function which has local minima at certain intervals of local consonance related to the timbre. This is related to the music-theoretical notion of consonant intervals and scales. For the subspace consisting of all timbres with an interval of local consonance at a chosen point β, the main theorem describes certain points on the boundary by the vanishing of one-sided derivatives of dissonance functions at β.","PeriodicalId":50138,"journal":{"name":"Journal of Mathematics and Music","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2021-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematics and Music","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1080/17459737.2021.1882600","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

When the same sound is produced simultaneously with two different fundamental frequencies, auditory roughness is observed. If the first sound is fixed and the fundamental frequency of the second is varied continuously, auditory roughness also varies continuously. A vowel sound is distinguished by its spectral envelope – which is independent of the fundamental frequency. This is a motivation to define the metric space of timbres. Each timbre is associated with a dissonance function which has local minima at certain intervals of local consonance related to the timbre. This is related to the music-theoretical notion of consonant intervals and scales. For the subspace consisting of all timbres with an interval of local consonance at a chosen point β, the main theorem describes certain points on the boundary by the vanishing of one-sided derivatives of dissonance functions at β.
失谐函数的局部极小值
当同一声音同时以两个不同的基频产生时,观察到听觉粗糙。如果第一个声音是固定的,第二个声音的基频是连续变化的,那么听觉粗糙度也是连续变化的。一个元音是通过它的频谱包络来区分的,它与基本频率无关。这是定义音色度量空间的动机。每个音色都与一个不和谐函数相关联,该不和谐函数在与音色相关的局部和音的一定间隔内具有局部最小值。这与辅音音程和音阶的音乐理论概念有关。对于由所有音色组成的子空间,这些音色在选定的点β处具有局部谐和区间,主定理通过在β处不谐和函数的单侧导数的消失来描述边界上的某些点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Mathematics and Music
Journal of Mathematics and Music 数学-数学跨学科应用
CiteScore
1.90
自引率
18.20%
发文量
18
审稿时长
>12 weeks
期刊介绍: Journal of Mathematics and Music aims to advance the use of mathematical modelling and computation in music theory. The Journal focuses on mathematical approaches to musical structures and processes, including mathematical investigations into music-theoretic or compositional issues as well as mathematically motivated analyses of musical works or performances. In consideration of the deep unsolved ontological and epistemological questions concerning knowledge about music, the Journal is open to a broad array of methodologies and topics, particularly those outside of established research fields such as acoustics, sound engineering, auditory perception, linguistics etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信