{"title":"Exploring Soil Spatial Variability with GIS, Remote Sensing, and Geostatistical Approach","authors":"Sangita Singh, K. Sarma","doi":"10.56946/jspae.v2i1.186","DOIUrl":null,"url":null,"abstract":"This article provides a thorough overview of a wide range of advanced statistical methods that have found extensive and resilient applications in the intricate field of spatial modeling for variables in a geographical information system (GIS) platform. The noteworthy triumph of these approaches can be due to a convergence of speed, dependability, precision, and an inherent eco-consciousness that coexist to reshape the scenario of environmental data analysis. The utilization of these models has outshined conventional methods in the present terrain of scientific investigation and environmental analysis, becoming an authentication of innovative research and decision-making procedures. These approaches demonstrate commendable data utilization efficiency by effectively accepting reduced sample sizes. This not only saves resources but also aligns with the ethical imperative of minimizing environmental effects wherever possible. Furthermore, the combination of these statistical techniques with GIS has paved the way that greatly expands their utility. This tool helps to discover deep spatial linkages, extrapolate trends, and findings into actionable insights that are relatable across all disciplines. These approaches encompass not only predictive modeling but also the realms of error assessment and efficiency evaluation. In conclusion, the adoption of these statistical methods is quite useful in facilitating sound decision-making environmental studies. Some of the domains include soil properties, air quality parameters, vegetation distribution, land cover and land use, water quality parameters, temperature and climate variables, natural hazards, urban infrastructure planning, ecological habitats, noise pollution levels, and radiation and exposure assessment. As the trajectory of scientific growth unfolds, these techniques will serve in directing researchers, practitioners, and policymakers to a future where empirical accuracy and environmental consciousness meet synergistically.","PeriodicalId":29812,"journal":{"name":"Journal of Soil, Plant and Environment","volume":"94 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Soil, Plant and Environment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56946/jspae.v2i1.186","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
This article provides a thorough overview of a wide range of advanced statistical methods that have found extensive and resilient applications in the intricate field of spatial modeling for variables in a geographical information system (GIS) platform. The noteworthy triumph of these approaches can be due to a convergence of speed, dependability, precision, and an inherent eco-consciousness that coexist to reshape the scenario of environmental data analysis. The utilization of these models has outshined conventional methods in the present terrain of scientific investigation and environmental analysis, becoming an authentication of innovative research and decision-making procedures. These approaches demonstrate commendable data utilization efficiency by effectively accepting reduced sample sizes. This not only saves resources but also aligns with the ethical imperative of minimizing environmental effects wherever possible. Furthermore, the combination of these statistical techniques with GIS has paved the way that greatly expands their utility. This tool helps to discover deep spatial linkages, extrapolate trends, and findings into actionable insights that are relatable across all disciplines. These approaches encompass not only predictive modeling but also the realms of error assessment and efficiency evaluation. In conclusion, the adoption of these statistical methods is quite useful in facilitating sound decision-making environmental studies. Some of the domains include soil properties, air quality parameters, vegetation distribution, land cover and land use, water quality parameters, temperature and climate variables, natural hazards, urban infrastructure planning, ecological habitats, noise pollution levels, and radiation and exposure assessment. As the trajectory of scientific growth unfolds, these techniques will serve in directing researchers, practitioners, and policymakers to a future where empirical accuracy and environmental consciousness meet synergistically.
期刊介绍:
Journal of Soil, Plant and Environment is an open peer-reviewed journal that considers articles and review articles on all aspects of agricultural sciences.
Aim and Scope
Journal of Soil, Plant and Environment (ISSN: 2957-9082) is an international journal dedicated to the advancements in agriculture throughout the world. The goal of this journal is to provide a platform for scientists, students, academics and engineers all over the world to promote, share, and discuss various new issues and developments in different areas of agricultural sciences. All manuscripts must be prepared in English and are subject to a rigorous and fair peer-review process. Accepted papers will appear online within 3 weeks followed by printed hard copy.
Journal of Soil, Plant and Environment (ISSN: 2957-9082) publishes original papers including but not limited to the following fields: Soil–plant relationships; crop science; soil science; biometry; crop, soil, pasture, and range management; crop, forage, and pasture production and utilization; turfgrass; agroclimatology; agronomic models; integrated pest management; integrated agricultural systems; and various aspects of entomology, weed science, animal science, plant pathology, and agricultural economics as applied to production agriculture.
We are also interested in: 1) Short Reports– 2-5 pages where the paper is intended to present either an original idea with theoretical treatment or preliminary data and results; 2) Book Reviews – Comments and critiques of recently published books in agricultural sciences.