WE-HML: hybrid WCET estimation using machine learning for architectures with caches

IF 0.5 Q4 COMPUTER SCIENCE, SOFTWARE ENGINEERING
Abderaouf N. Amalou, I. Puaut, Gilles Muller
{"title":"WE-HML: hybrid WCET estimation using machine learning for architectures with caches","authors":"Abderaouf N. Amalou, I. Puaut, Gilles Muller","doi":"10.1109/RTCSA52859.2021.00011","DOIUrl":null,"url":null,"abstract":"Modern processors raise a challenge for WCET estimation, since detailed knowledge of the processor microarchitecture is not available. This paper proposes a novel hybrid WCET estimation technique, WE-HML, in which the longest path is estimated using static techniques, whereas machine learning (ML) is used to determine the WCET of basic blocks. In contrast to existing literature using ML techniques for WCET estimation, WE-HML (i) operates on binary code for improved precision of learning, as compared to the related techniques operating at source code or intermediate code level; (ii) trains the ML algorithms on a large set of automatically generated programs for improved quality of learning; (iii) proposes a technique to take into account data caches. Experiments on an ARM Cortex-A53 processor show that for all benchmarks, WCET estimates obtained by WE-HML are larger than all possible execution times. Moreover, the cache modeling technique of WE-HML allows an improvement of 65 percent on average of WCET estimates compared to its cache-agnostic equivalent.","PeriodicalId":38446,"journal":{"name":"International Journal of Embedded and Real-Time Communication Systems (IJERTCS)","volume":"309 5","pages":"31-40"},"PeriodicalIF":0.5000,"publicationDate":"2021-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Embedded and Real-Time Communication Systems (IJERTCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RTCSA52859.2021.00011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 4

Abstract

Modern processors raise a challenge for WCET estimation, since detailed knowledge of the processor microarchitecture is not available. This paper proposes a novel hybrid WCET estimation technique, WE-HML, in which the longest path is estimated using static techniques, whereas machine learning (ML) is used to determine the WCET of basic blocks. In contrast to existing literature using ML techniques for WCET estimation, WE-HML (i) operates on binary code for improved precision of learning, as compared to the related techniques operating at source code or intermediate code level; (ii) trains the ML algorithms on a large set of automatically generated programs for improved quality of learning; (iii) proposes a technique to take into account data caches. Experiments on an ARM Cortex-A53 processor show that for all benchmarks, WCET estimates obtained by WE-HML are larger than all possible execution times. Moreover, the cache modeling technique of WE-HML allows an improvement of 65 percent on average of WCET estimates compared to its cache-agnostic equivalent.
we - html:对带缓存的架构使用机器学习的混合WCET估计
现代处理器对WCET估计提出了挑战,因为处理器微体系结构的详细知识是不可用的。本文提出了一种新的混合WCET估计技术,即WE-HML,其中使用静态技术估计最长路径,而使用机器学习(ML)来确定基本块的WCET。与使用ML技术进行WCET估计的现有文献相比,与在源代码或中间代码级别操作的相关技术相比,WE-HML (i)在二进制代码上操作以提高学习精度;(ii)在大量自动生成的程序上训练ML算法,以提高学习质量;(iii)提出一项考虑数据储存的技术。在ARM Cortex-A53处理器上的实验表明,对于所有基准测试,由we - html获得的WCET估计都大于所有可能的执行时间。此外,与与缓存无关的等效技术相比,we - html的缓存建模技术允许平均提高65%的WCET估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
14.30%
发文量
17
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信