Гармонізація точкових поліномів.

Q4 Computer Science
Віктор Михайлович Верещага, Євген Олександрович Адоньєв, O. Павленко, К.О. Лисенко
{"title":"Гармонізація точкових поліномів.","authors":"Віктор Михайлович Верещага, Євген Олександрович Адоньєв, O. Павленко, К.О. Лисенко","doi":"10.36910/6775-2524-0560-2021-42-05","DOIUrl":null,"url":null,"abstract":"Точковий поліном – це ціла раціональна функція у параметричній формі, що складається із суми добутків, у яких першими множниками кожного з доданків є базисна точка вихідної дискретно поданої лінії (ДПЛ), а другим – алгебраїчний множник, що являє собою цілий раціональний вираз, який подається у вигляді добутку різниць між параметрами відповідних вузлових точок і поточним параметром – аргументом t для проміжної точки. Точкові поліноми покладено в основу композиційної геометрії та композиційного методу геометричного моделювання. Композиційна геометрія – це геометрія, у якій кожна вихідна геометрична фігура (ГФ) розділяється на геометричну та параметричну складові і розв’язок будь-якої задачі відбувається відносно усіх базисних точок цієї ГФ,безвідносно до системи координат, в якій ці базисні точки визначені. Процес розділення ГФ на геометричну та параметричну складові названо нами – уніфікацією вихідної ГФ. Геометрична складова описується за допомоги композиційної матриці точкової – АТ, а параметрична – за допомоги композиційної матриці параметричної – АП. Складові точкового поліному – доданки, являють собою добутки відповідних елементів композиційних матриць – точкової АТ = ((Аij)) та параметричної АП = ((аij)). Композиційні матриці точкові описують геометричні композиції точок для визначеної їх кількості. При цьому, геть не існую ніяких обмежень щодо координат, які ці точки визначають. Тобто, зміна або заміна будь-якої з точок геометричної композиції або, навіть, усієї композиції точок, в цілому, призведе тільки до зміни елементів композиційної матриці (КМ) точкової, і ніяк не потягне за собою зміни подальшого розв’язку. При цьому, зовсім не відбудеться змін у КМ параметричній, яка визначає взаємне розташування між елементами композиції точок, які утворюють ГФ. Окрім випадків, коли нововведені точки змінили своє розташування уздовж напрямку, у якому здійснювалася параметризація елементів вихідної ГФ. І, навіть, у цьому випадку, зміні підлягають тільки окремі елементи КМ параметричної, а подальший алгоритм розв’язку геть не стануть змін. Під композицією, взагалі, необхідно розуміти дискретний набір взаємопов’язаних елементів (часток, об’єктів, факторів, точок тощо), з яких складають цілісний об’єкт, що сприймається як ціле, має певну внутрішню єдність, при цьому, зміна або заміна будь-якого з цих елементів, у цілому, не тягне за собою ніяких змін для решти інших елементів наявної геометричної композиції. Геометрична композиція – це композиція, елементами якої є непуста скінчена множина точок, частина з яких може утворювати певну підмножину, і, при цьому, для кожного елементу цієї множини встановлено його власні розміри та розміри, що визначають їх взаємне розташування","PeriodicalId":38688,"journal":{"name":"Journal of Computing and Information Technology","volume":"104 5","pages":"31-36"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computing and Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.36910/6775-2524-0560-2021-42-05","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 0

Abstract

Точковий поліном – це ціла раціональна функція у параметричній формі, що складається із суми добутків, у яких першими множниками кожного з доданків є базисна точка вихідної дискретно поданої лінії (ДПЛ), а другим – алгебраїчний множник, що являє собою цілий раціональний вираз, який подається у вигляді добутку різниць між параметрами відповідних вузлових точок і поточним параметром – аргументом t для проміжної точки. Точкові поліноми покладено в основу композиційної геометрії та композиційного методу геометричного моделювання. Композиційна геометрія – це геометрія, у якій кожна вихідна геометрична фігура (ГФ) розділяється на геометричну та параметричну складові і розв’язок будь-якої задачі відбувається відносно усіх базисних точок цієї ГФ,безвідносно до системи координат, в якій ці базисні точки визначені. Процес розділення ГФ на геометричну та параметричну складові названо нами – уніфікацією вихідної ГФ. Геометрична складова описується за допомоги композиційної матриці точкової – АТ, а параметрична – за допомоги композиційної матриці параметричної – АП. Складові точкового поліному – доданки, являють собою добутки відповідних елементів композиційних матриць – точкової АТ = ((Аij)) та параметричної АП = ((аij)). Композиційні матриці точкові описують геометричні композиції точок для визначеної їх кількості. При цьому, геть не існую ніяких обмежень щодо координат, які ці точки визначають. Тобто, зміна або заміна будь-якої з точок геометричної композиції або, навіть, усієї композиції точок, в цілому, призведе тільки до зміни елементів композиційної матриці (КМ) точкової, і ніяк не потягне за собою зміни подальшого розв’язку. При цьому, зовсім не відбудеться змін у КМ параметричній, яка визначає взаємне розташування між елементами композиції точок, які утворюють ГФ. Окрім випадків, коли нововведені точки змінили своє розташування уздовж напрямку, у якому здійснювалася параметризація елементів вихідної ГФ. І, навіть, у цьому випадку, зміні підлягають тільки окремі елементи КМ параметричної, а подальший алгоритм розв’язку геть не стануть змін. Під композицією, взагалі, необхідно розуміти дискретний набір взаємопов’язаних елементів (часток, об’єктів, факторів, точок тощо), з яких складають цілісний об’єкт, що сприймається як ціле, має певну внутрішню єдність, при цьому, зміна або заміна будь-якого з цих елементів, у цілому, не тягне за собою ніяких змін для решти інших елементів наявної геометричної композиції. Геометрична композиція – це композиція, елементами якої є непуста скінчена множина точок, частина з яких може утворювати певну підмножину, і, при цьому, для кожного елементу цієї множини встановлено його власні розміри та розміри, що визначають їх взаємне розташування
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Computing and Information Technology
Journal of Computing and Information Technology Computer Science-Computer Science (all)
CiteScore
0.60
自引率
0.00%
发文量
16
审稿时长
26 weeks
期刊介绍: CIT. Journal of Computing and Information Technology is an international peer-reviewed journal covering the area of computing and information technology, i.e. computer science, computer engineering, software engineering, information systems, and information technology. CIT endeavors to publish stimulating accounts of original scientific work, primarily including research papers on both theoretical and practical issues, as well as case studies describing the application and critical evaluation of theory. Surveys and state-of-the-art reports will be considered only exceptionally; proposals for such submissions should be sent to the Editorial Board for scrutiny. Specific areas of interest comprise, but are not restricted to, the following topics: theory of computing, design and analysis of algorithms, numerical and symbolic computing, scientific computing, artificial intelligence, image processing, pattern recognition, computer vision, embedded and real-time systems, operating systems, computer networking, Web technologies, distributed systems, human-computer interaction, technology enhanced learning, multimedia, database systems, data mining, machine learning, knowledge engineering, soft computing systems and network security, computational statistics, computational linguistics, and natural language processing. Special attention is paid to educational, social, legal and managerial aspects of computing and information technology. In this respect CIT fosters the exchange of ideas, experience and knowledge between regions with different technological and cultural background, and in particular developed and developing ones.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信