Using Approximate Bayesian Computation to Estimate Transmission Rates of Nosocomial Pathogens

C. Drovandi, A. Pettitt
{"title":"Using Approximate Bayesian Computation to Estimate Transmission Rates of Nosocomial Pathogens","authors":"C. Drovandi, A. Pettitt","doi":"10.2202/1948-4690.1025","DOIUrl":null,"url":null,"abstract":"In this paper, we apply a simulation based approach for estimating transmission rates of nosocomial pathogens. In particular, the objective is to infer the transmission rate between colonised health-care practitioners and uncolonised patients (and vice versa) solely from routinely collected incidence data. The method, using approximate Bayesian computation, is substantially less computer intensive and easier to implement than likelihood-based approaches we refer to here. We find through replacing the likelihood with a comparison of an efficient summary statistic between observed and simulated data that little is lost in the precision of estimated transmission rates. Furthermore, we investigate the impact of incorporating uncertainty in previously fixed parameters on the precision of the estimated transmission rates.","PeriodicalId":74867,"journal":{"name":"Statistical communications in infectious diseases","volume":"35 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2011-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical communications in infectious diseases","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2202/1948-4690.1025","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

In this paper, we apply a simulation based approach for estimating transmission rates of nosocomial pathogens. In particular, the objective is to infer the transmission rate between colonised health-care practitioners and uncolonised patients (and vice versa) solely from routinely collected incidence data. The method, using approximate Bayesian computation, is substantially less computer intensive and easier to implement than likelihood-based approaches we refer to here. We find through replacing the likelihood with a comparison of an efficient summary statistic between observed and simulated data that little is lost in the precision of estimated transmission rates. Furthermore, we investigate the impact of incorporating uncertainty in previously fixed parameters on the precision of the estimated transmission rates.
用近似贝叶斯计算估计医院病原体的传播率
在本文中,我们应用基于模拟的方法来估计医院病原体的传播率。具体而言,其目标是仅从常规收集的发病率数据推断移民保健从业人员与非移民患者之间的传播率(反之亦然)。该方法使用近似贝叶斯计算,与我们在这里提到的基于似然的方法相比,它的计算机密集程度大大降低,并且更容易实现。我们发现,通过用观测数据和模拟数据之间的有效汇总统计量的比较来代替似然,估计传输速率的精度几乎没有损失。此外,我们还研究了在先前固定参数中加入不确定性对估计传输速率精度的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信