Stochastic local search for pattern set mining

M. Hossain, Tajkia Tasnim, Swakkhar Shatabda, D. Farid
{"title":"Stochastic local search for pattern set mining","authors":"M. Hossain, Tajkia Tasnim, Swakkhar Shatabda, D. Farid","doi":"10.1109/SKIMA.2014.7083547","DOIUrl":null,"url":null,"abstract":"Local search methods can quickly find good quality solutions in cases where systematic search methods might take a large amount of time. Moreover, in the context of pattern set mining, exhaustive search methods are not applicable due to the large search space they have to explore. In this paper, we propose the application of stochastic local search to solve the pattern set mining. Specifically, to the task of concept learning. We applied a number of local search algorithms on a standard benchmark instances for pattern set mining and the results show the potentials for further exploration.","PeriodicalId":22294,"journal":{"name":"The 8th International Conference on Software, Knowledge, Information Management and Applications (SKIMA 2014)","volume":"164 2","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The 8th International Conference on Software, Knowledge, Information Management and Applications (SKIMA 2014)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SKIMA.2014.7083547","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Local search methods can quickly find good quality solutions in cases where systematic search methods might take a large amount of time. Moreover, in the context of pattern set mining, exhaustive search methods are not applicable due to the large search space they have to explore. In this paper, we propose the application of stochastic local search to solve the pattern set mining. Specifically, to the task of concept learning. We applied a number of local search algorithms on a standard benchmark instances for pattern set mining and the results show the potentials for further exploration.
模式集挖掘的随机局部搜索
在系统搜索可能需要花费大量时间的情况下,局部搜索方法可以快速找到高质量的解决方案。此外,在模式集挖掘的背景下,穷举搜索方法由于需要探索的搜索空间较大而不适用。本文提出应用随机局部搜索来解决模式集挖掘问题。具体到概念学习任务。我们在一个标准基准实例上应用了许多局部搜索算法进行模式集挖掘,结果显示了进一步探索的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信