An approximation technique for solving nonlinear oscillators

IF 2.8 4区 工程技术 Q1 ACOUSTICS
Md Ashraful Huq, M Zahid Hasan, M. Alam
{"title":"An approximation technique for solving nonlinear oscillators","authors":"Md Ashraful Huq, M Zahid Hasan, M. Alam","doi":"10.1177/14613484231195267","DOIUrl":null,"url":null,"abstract":"Recently, an approximation technique was presented for solving strong nonlinear oscillators modeled by second-order differential equations. Due to the arising of an algebraic complicity, the method fails to determine suitable solution of some important nonlinear problems such as quadratic oscillator, cubical Duffing oscillator of softening springs, and pendulum equation. However, suitable solutions of these oscillators are found by rearranging only an algebraic equation related to amplitude and frequency. The determination of solutions is simpler than the original version.","PeriodicalId":56067,"journal":{"name":"Journal of Low Frequency Noise Vibration and Active Control","volume":"82 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2023-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Low Frequency Noise Vibration and Active Control","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/14613484231195267","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ACOUSTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Recently, an approximation technique was presented for solving strong nonlinear oscillators modeled by second-order differential equations. Due to the arising of an algebraic complicity, the method fails to determine suitable solution of some important nonlinear problems such as quadratic oscillator, cubical Duffing oscillator of softening springs, and pendulum equation. However, suitable solutions of these oscillators are found by rearranging only an algebraic equation related to amplitude and frequency. The determination of solutions is simpler than the original version.
求解非线性振子的近似技术
最近提出了一种求解二阶微分方程强非线性振子的近似方法。由于产生了代数复杂性,该方法不能确定一些重要的非线性问题的合适解,如二次振子、软化弹簧的三次Duffing振子和摆方程。然而,这些振子的合适解只能通过重新排列与振幅和频率有关的代数方程来找到。溶液的确定比原来的版本更简单。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.90
自引率
4.30%
发文量
98
审稿时长
15 weeks
期刊介绍: Journal of Low Frequency Noise, Vibration & Active Control is a peer-reviewed, open access journal, bringing together material which otherwise would be scattered. The journal is the cornerstone of the creation of a unified corpus of knowledge on the subject.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信