Drolma Lhakpa, Y. Qiu, Pa Lhak, Lijuan Shi, Maoce Cheng, B. Cheng
{"title":"Long-term records of glacier evolution and associated proglacial lakes on the Tibetan Plateau (1976‒2020)","authors":"Drolma Lhakpa, Y. Qiu, Pa Lhak, Lijuan Shi, Maoce Cheng, B. Cheng","doi":"10.1080/20964471.2022.2131956","DOIUrl":null,"url":null,"abstract":"ABSTRACT The glaciers on the Tibetan Plateau (TP) constitute critical sources of water for the proglacial lakes and many rivers found downstream. To better understand the evolution of glaciers and the impact of this on proglacial lakes, seven glaciers corresponding to continenṅtal, subcontinental, and marine climate types that are influenced by westerlies and the Indian summer monsoon were selected for study. The evolution of the edges of these glaciers and their associated proglacial lakes were identified based on the visual interpretation of Landsat TM/ETM+/OLI images. A dataset covering the period 1976–2020 that included the glacier and proglacial lake edge vectors was then created. The relative errors in the areas of the individual glaciers were less than 3%, and for the proglacial lakes these errors were in the range 0%–7%. The dataset was used to effectively compare the changes in glaciers and proglacial lakes that have occurred over the past four decades. The most striking changes that were found were the retreat of glaciers and the formation of small proglacial lakes. This dataset could also be used as a proxy to support research on changes in mountain glaciers, particularly their response to climate change and water resources. This response is of great scientific significance and is important in many applications, including assessments of the ecological problems caused by melting glaciers. The dataset can be downloaded from http://doi.org/10.57760/sciencedb.j00076.00131.","PeriodicalId":8765,"journal":{"name":"Big Earth Data","volume":"456 ","pages":"435 - 452"},"PeriodicalIF":4.2000,"publicationDate":"2022-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Big Earth Data","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1080/20964471.2022.2131956","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 3
Abstract
ABSTRACT The glaciers on the Tibetan Plateau (TP) constitute critical sources of water for the proglacial lakes and many rivers found downstream. To better understand the evolution of glaciers and the impact of this on proglacial lakes, seven glaciers corresponding to continenṅtal, subcontinental, and marine climate types that are influenced by westerlies and the Indian summer monsoon were selected for study. The evolution of the edges of these glaciers and their associated proglacial lakes were identified based on the visual interpretation of Landsat TM/ETM+/OLI images. A dataset covering the period 1976–2020 that included the glacier and proglacial lake edge vectors was then created. The relative errors in the areas of the individual glaciers were less than 3%, and for the proglacial lakes these errors were in the range 0%–7%. The dataset was used to effectively compare the changes in glaciers and proglacial lakes that have occurred over the past four decades. The most striking changes that were found were the retreat of glaciers and the formation of small proglacial lakes. This dataset could also be used as a proxy to support research on changes in mountain glaciers, particularly their response to climate change and water resources. This response is of great scientific significance and is important in many applications, including assessments of the ecological problems caused by melting glaciers. The dataset can be downloaded from http://doi.org/10.57760/sciencedb.j00076.00131.