T. Buckreis, J. Stewart, S. Brandenberg, Pengfei Wang
{"title":"Subregional Anelastic Attenuation Model for California","authors":"T. Buckreis, J. Stewart, S. Brandenberg, Pengfei Wang","doi":"10.1785/0120220173","DOIUrl":null,"url":null,"abstract":"\n Ground-motion models (GMMs) typically include a source-to-site path model that describes the attenuation of ground motion with distance due to geometric spreading and anelastic attenuation. In contemporary GMMs, the anelastic component is typically derived for use in one or more broad geographical regions such as California or Japan, which necessarily averages spatially variable path effects within those regions. We extend that path modeling framework to account for systematic variations of anelastic attenuation for ten physiographic subregions in California that are defined in consideration of geological differences. Using a large database that is approximately doubled in size for California relative to Next Generation Attenuation (NGA)-West2, we find relatively high attenuation in Coast Range areas (North Coast, Bay area, and Central Coast), relatively low attenuation in eastern California (Sierra Nevada, eastern California shear zone), and state-average attenuation elsewhere, including southern California. As part of these analyses, we find for the North Coast region relatively weak ground motions on average from induced events (from the Geysers), similar attenuation rates for induced and tectonic events, and higher levels of ground-motion dispersion than other portions of the state. The proposed subregional path model appreciably reduces within-event and single-station variability relative to an NGA-West2 GMM for ground motions at large distance (RJB>100 km). The approach presented here can readily be adapted for other GMMs and regions.","PeriodicalId":9444,"journal":{"name":"Bulletin of the Seismological Society of America","volume":"13 6","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Seismological Society of America","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1785/0120220173","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Ground-motion models (GMMs) typically include a source-to-site path model that describes the attenuation of ground motion with distance due to geometric spreading and anelastic attenuation. In contemporary GMMs, the anelastic component is typically derived for use in one or more broad geographical regions such as California or Japan, which necessarily averages spatially variable path effects within those regions. We extend that path modeling framework to account for systematic variations of anelastic attenuation for ten physiographic subregions in California that are defined in consideration of geological differences. Using a large database that is approximately doubled in size for California relative to Next Generation Attenuation (NGA)-West2, we find relatively high attenuation in Coast Range areas (North Coast, Bay area, and Central Coast), relatively low attenuation in eastern California (Sierra Nevada, eastern California shear zone), and state-average attenuation elsewhere, including southern California. As part of these analyses, we find for the North Coast region relatively weak ground motions on average from induced events (from the Geysers), similar attenuation rates for induced and tectonic events, and higher levels of ground-motion dispersion than other portions of the state. The proposed subregional path model appreciably reduces within-event and single-station variability relative to an NGA-West2 GMM for ground motions at large distance (RJB>100 km). The approach presented here can readily be adapted for other GMMs and regions.
期刊介绍:
The Bulletin of the Seismological Society of America, commonly referred to as BSSA, (ISSN 0037-1106) is the premier journal of advanced research in earthquake seismology and related disciplines. It first appeared in 1911 and became a bimonthly in 1963. Each issue is composed of scientific papers on the various aspects of seismology, including investigation of specific earthquakes, theoretical and observational studies of seismic waves, inverse methods for determining the structure of the Earth or the dynamics of the earthquake source, seismometry, earthquake hazard and risk estimation, seismotectonics, and earthquake engineering. Special issues focus on important earthquakes or rapidly changing topics in seismology. BSSA is published by the Seismological Society of America.