Exploiting Hybrid Semantics of Relation Paths for Multi-hop Question Answering over Knowledge Graphs

Zile Qiao, Wei Ye, Tong Zhang, Tong Mo, Weiping Li, Shikun Zhang
{"title":"Exploiting Hybrid Semantics of Relation Paths for Multi-hop Question Answering over Knowledge Graphs","authors":"Zile Qiao, Wei Ye, Tong Zhang, Tong Mo, Weiping Li, Shikun Zhang","doi":"10.48550/arXiv.2209.00870","DOIUrl":null,"url":null,"abstract":"Answering natural language questions on knowledge graphs (KGQA) remains a great challenge in terms of understanding complex questions via multi-hop reasoning. Previous efforts usually exploit large-scale entity-related text corpus or knowledge graph (KG) embeddings as auxiliary information to facilitate answer selection. However, the rich semantics implied in off-the-shelf relation paths between entities is far from well explored. This paper proposes improving multi-hop KGQA by exploiting relation paths’ hybrid semantics. Specifically, we integrate explicit textual information and implicit KG structural features of relation paths based on a novel rotate-and-scale entity link prediction framework. Extensive experiments on three existing KGQA datasets demonstrate the superiority of our method, especially in multi-hop scenarios. Further investigation confirms our method’s systematical coordination between questions and relation paths to identify answer entities.","PeriodicalId":91381,"journal":{"name":"Proceedings of COLING. International Conference on Computational Linguistics","volume":"43 21","pages":"1813-1822"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of COLING. International Conference on Computational Linguistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2209.00870","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Answering natural language questions on knowledge graphs (KGQA) remains a great challenge in terms of understanding complex questions via multi-hop reasoning. Previous efforts usually exploit large-scale entity-related text corpus or knowledge graph (KG) embeddings as auxiliary information to facilitate answer selection. However, the rich semantics implied in off-the-shelf relation paths between entities is far from well explored. This paper proposes improving multi-hop KGQA by exploiting relation paths’ hybrid semantics. Specifically, we integrate explicit textual information and implicit KG structural features of relation paths based on a novel rotate-and-scale entity link prediction framework. Extensive experiments on three existing KGQA datasets demonstrate the superiority of our method, especially in multi-hop scenarios. Further investigation confirms our method’s systematical coordination between questions and relation paths to identify answer entities.
利用关系路径的混合语义实现知识图多跳问答
在知识图上回答自然语言问题(KGQA)在通过多跳推理理解复杂问题方面仍然是一个巨大的挑战。以前的研究通常利用大规模实体相关文本语料库或知识图(KG)嵌入作为辅助信息来促进答案选择。然而,实体之间现成关系路径中隐含的丰富语义还远远没有得到很好的探索。本文提出利用关系路径的混合语义改进多跳KGQA算法。具体而言,我们基于一种新颖的旋转和缩放实体链接预测框架,集成了关系路径的显式文本信息和隐式KG结构特征。在三个现有的KGQA数据集上进行的大量实验证明了我们的方法的优越性,特别是在多跳场景下。进一步的研究证实了我们的方法系统地协调了问题和关系路径来识别答案实体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信