Estimates of Hardy - Rellich constants for polyharmonic operators and their generalizations

IF 0.5 Q3 MATHEMATICS
F. Avkhadiev
{"title":"Estimates of Hardy - Rellich constants for polyharmonic operators and their generalizations","authors":"F. Avkhadiev","doi":"10.13108/2017-9-3-8","DOIUrl":null,"url":null,"abstract":"We prove the lower bounds for the functions introduced as the maximal constants in the Hardy and Rellich type inequalities for polyharmonic operator of order m in domains in a Euclidean space. In the proofs we employ essentially the known integral inequality by O.A. Ladyzhenskaya and its generalizations. For the convex domains we establish two generalizations of the known results obtained in the paper M.P. Owen, Proc. Royal Soc. Edinburgh, 1999 and in the book A.A. Balinsky, W.D. Evans, R.T. Lewis, The analysis and geometry of hardy’s inequality, Springer, 2015. In particular, we obtain a new proof of the theorem by M.P. Owen for polyharmonic operators in convex domains. For the case of arbitrary domains we prove universal lower bound for the constants in the inequalities for mth order polyharmonic operators by using the products of m different constants in Hardy type inequalities. This allows us to obtain explicit lower bounds for the constants in Rellich type inequalities for the dimension two and three. In the last section of the paper we discuss two open problems. One of them is similar to the problem by E.B. Davies on the upper bounds for the Hardy constants. The other problem concerns the comparison of the constants in Hardy and Rellich type inequalities for the operators defined in three-dimensional domains.","PeriodicalId":43644,"journal":{"name":"Ufa Mathematical Journal","volume":"28 1","pages":"8-17"},"PeriodicalIF":0.5000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ufa Mathematical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13108/2017-9-3-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

Abstract

We prove the lower bounds for the functions introduced as the maximal constants in the Hardy and Rellich type inequalities for polyharmonic operator of order m in domains in a Euclidean space. In the proofs we employ essentially the known integral inequality by O.A. Ladyzhenskaya and its generalizations. For the convex domains we establish two generalizations of the known results obtained in the paper M.P. Owen, Proc. Royal Soc. Edinburgh, 1999 and in the book A.A. Balinsky, W.D. Evans, R.T. Lewis, The analysis and geometry of hardy’s inequality, Springer, 2015. In particular, we obtain a new proof of the theorem by M.P. Owen for polyharmonic operators in convex domains. For the case of arbitrary domains we prove universal lower bound for the constants in the inequalities for mth order polyharmonic operators by using the products of m different constants in Hardy type inequalities. This allows us to obtain explicit lower bounds for the constants in Rellich type inequalities for the dimension two and three. In the last section of the paper we discuss two open problems. One of them is similar to the problem by E.B. Davies on the upper bounds for the Hardy constants. The other problem concerns the comparison of the constants in Hardy and Rellich type inequalities for the operators defined in three-dimensional domains.
多谐算子Hardy - Rellich常数的估计及其推广
我们证明了欧几里德空间中m阶多谐算子的Hardy和Rellich型不等式中以极大常数形式引入的函数的下界。在证明中,我们基本上采用了Ladyzhenskaya提出的已知的积分不等式及其推广。对于凸域,我们建立了M.P. Owen, Proc. Royal Soc论文中已知结果的两个推广。A.A. Balinsky, W.D. Evans, R.T. Lewis,《哈代不等式的分析与几何》,Springer, 2015。特别地,我们得到了M.P. Owen关于凸域上多谐算子定理的一个新的证明。在任意定域下,利用Hardy型不等式中m个不同常数的积证明了m阶多调和算子不等式中常数的普遍下界。这使我们能够获得第2维和第3维Rellich型不等式中常数的显式下界。在论文的最后一部分,我们讨论了两个开放的问题。其中一个类似于E.B. Davies关于Hardy常数上界的问题。另一个问题涉及在三维域上定义的算子的Hardy型不等式和Rellich型不等式常数的比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信