Strong uniqueness of finite dimensional Dirichlet operators with singular drifts

IF 0.6 4区 数学 Q4 MATHEMATICS, APPLIED
Haesung Lee
{"title":"Strong uniqueness of finite dimensional Dirichlet operators with singular drifts","authors":"Haesung Lee","doi":"10.1142/s0219025723500091","DOIUrl":null,"url":null,"abstract":"We show the $L^r(\\mathbb{R}^d, \\mu)$-uniqueness for any $r \\in (1, 2]$ and the essential self-adjointness of a Dirichlet operator $Lf = \\Delta f +\\langle \\frac{1}{\\rho}\\nabla \\rho , \\nabla f \\rangle$, $f \\in C_0^{\\infty}(\\mathbb{R}^d)$ with $d \\geq 3$ and $\\mu=\\rho dx$. In particular, $\\nabla \\rho$ is allowed to be in $L^d_{loc}(\\mathbb{R}^d, \\mathbb{R}^d)$ or in $L^{2+\\varepsilon}_{loc}(\\mathbb{R}^d, \\mathbb{R}^d)$ for some $\\varepsilon>0$, while $\\rho$ is required to be locally bounded below and above by strictly positive constants. The main tools in this paper are elliptic regularity results for divergence and non-divergence type operators and basic properties of Dirichlet forms and their resolvents.","PeriodicalId":50366,"journal":{"name":"Infinite Dimensional Analysis Quantum Probability and Related Topics","volume":"120 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2021-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infinite Dimensional Analysis Quantum Probability and Related Topics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0219025723500091","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We show the $L^r(\mathbb{R}^d, \mu)$-uniqueness for any $r \in (1, 2]$ and the essential self-adjointness of a Dirichlet operator $Lf = \Delta f +\langle \frac{1}{\rho}\nabla \rho , \nabla f \rangle$, $f \in C_0^{\infty}(\mathbb{R}^d)$ with $d \geq 3$ and $\mu=\rho dx$. In particular, $\nabla \rho$ is allowed to be in $L^d_{loc}(\mathbb{R}^d, \mathbb{R}^d)$ or in $L^{2+\varepsilon}_{loc}(\mathbb{R}^d, \mathbb{R}^d)$ for some $\varepsilon>0$, while $\rho$ is required to be locally bounded below and above by strictly positive constants. The main tools in this paper are elliptic regularity results for divergence and non-divergence type operators and basic properties of Dirichlet forms and their resolvents.
奇异漂移有限维Dirichlet算子的强唯一性
我们证明了任意$r \in (1, 2]$的$L^r(\mathbb{R}^d, \mu)$ -唯一性和Dirichlet算子$Lf = \Delta f +\langle \frac{1}{\rho}\nabla \rho , \nabla f \rangle$, $f \in C_0^{\infty}(\mathbb{R}^d)$与$d \geq 3$和$\mu=\rho dx$的本质自伴随性。特别地,$\nabla \rho$可以在$L^d_{loc}(\mathbb{R}^d, \mathbb{R}^d)$中,对于某些$\varepsilon>0$,也可以在$L^{2+\varepsilon}_{loc}(\mathbb{R}^d, \mathbb{R}^d)$中,而$\rho$则需要由严格的正常量在上下局部限定。本文的主要工具是发散型和非发散型算子的椭圆正则性结果和狄利克雷形式的基本性质及其解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.50
自引率
11.10%
发文量
34
审稿时长
>12 weeks
期刊介绍: In the past few years the fields of infinite dimensional analysis and quantum probability have undergone increasingly significant developments and have found many new applications, in particular, to classical probability and to different branches of physics. The number of first-class papers in these fields has grown at the same rate. This is currently the only journal which is devoted to these fields. It constitutes an essential and central point of reference for the large number of mathematicians, mathematical physicists and other scientists who have been drawn into these areas. Both fields have strong interdisciplinary nature, with deep connection to, for example, classical probability, stochastic analysis, mathematical physics, operator algebras, irreversibility, ergodic theory and dynamical systems, quantum groups, classical and quantum stochastic geometry, quantum chaos, Dirichlet forms, harmonic analysis, quantum measurement, quantum computer, etc. The journal reflects this interdisciplinarity and welcomes high quality papers in all such related fields, particularly those which reveal connections with the main fields of this journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信