Compactness of scalar-flat conformal metrics on low-dimensional manifolds with constant mean curvature on boundary

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Seunghyeok Kim , Monica Musso , Juncheng Wei
{"title":"Compactness of scalar-flat conformal metrics on low-dimensional manifolds with constant mean curvature on boundary","authors":"Seunghyeok Kim ,&nbsp;Monica Musso ,&nbsp;Juncheng Wei","doi":"10.1016/j.anihpc.2021.01.005","DOIUrl":null,"url":null,"abstract":"<div><p>We concern <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span><span><span>-compactness of the solution set of the boundary Yamabe problem on smooth compact Riemannian manifolds with boundary provided that their dimensions are 4, 5 or 6. By conducting a quantitative analysis of a </span>linear equation<span> associated with the problem, we prove that the trace-free second fundamental form must vanish at possible blow-up points of a sequence of blowing-up solutions. Applying this result and the positive mass theorem, we deduce the </span></span><span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-compactness for all 4-manifolds (which may be non-umbilic). For the 5-dimensional case, we also establish that a sum of the second-order derivatives of the trace-free second fundamental form is non-negative at possible blow-up points. We essentially use this fact to obtain the <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-compactness for all 5-manifolds. Finally, we show that the <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span>-compactness on 6-manifolds is true if the trace-free second fundamental form on the boundary never vanishes.</p></div>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.anihpc.2021.01.005","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0294144921000299","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 6

Abstract

We concern C2-compactness of the solution set of the boundary Yamabe problem on smooth compact Riemannian manifolds with boundary provided that their dimensions are 4, 5 or 6. By conducting a quantitative analysis of a linear equation associated with the problem, we prove that the trace-free second fundamental form must vanish at possible blow-up points of a sequence of blowing-up solutions. Applying this result and the positive mass theorem, we deduce the C2-compactness for all 4-manifolds (which may be non-umbilic). For the 5-dimensional case, we also establish that a sum of the second-order derivatives of the trace-free second fundamental form is non-negative at possible blow-up points. We essentially use this fact to obtain the C2-compactness for all 5-manifolds. Finally, we show that the C2-compactness on 6-manifolds is true if the trace-free second fundamental form on the boundary never vanishes.

边界上具有常平均曲率的低维流形上的标量-平坦共形度量的紧性
研究了具有边界的光滑紧黎曼流形上边界Yamabe问题解集的c2 -紧性。通过对与该问题相关的线性方程进行定量分析,证明了无迹第二基本形式在一系列爆破解的可能爆破点处必须消失。应用这一结果和正质量定理,我们推导了所有4-流形(可能是非脐形)的c2紧性。对于五维情况,我们还证明了无迹二阶基本形式的二阶导数的和在可能的爆破点处是非负的。我们利用这个事实得到了所有5流形的c2紧性。最后,我们证明了当边界上无迹的第二基本形式不消失时,6流形上的c2紧性是成立的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信