On even rainbow or nontriangular directed cycles

IF 0.4 Q4 MATHEMATICS, APPLIED
A. Czygrinow, T. Molla, B. Nagle, Roy Oursler
{"title":"On even rainbow or nontriangular directed cycles","authors":"A. Czygrinow, T. Molla, B. Nagle, Roy Oursler","doi":"10.4310/joc.2021.v12.n4.a4","DOIUrl":null,"url":null,"abstract":"Let $G = (V, E)$ be an $n$-vertex edge-colored graph. In 2013, H. Li proved that if every vertex $v \\in V$ is incident to at least $(n+1)/2$ distinctly colored edges, then $G$ admits a rainbow triangle. We establish a corresponding result for fixed even rainbow $\\ell$-cycles $C_{\\ell}$: if every vertex $v \\in V$ is incident to at least $(n+5)/3$ distinctly colored edges, where $n \\geq n_0(\\ell)$ is sufficiently large, then $G$ admits an even rainbow $\\ell$-cycle $C_{\\ell}$. This result is best possible whenever $\\ell \\not\\equiv 0$ (mod 3). Correspondingly, we also show that for a fixed (even or odd) integer $\\ell \\geq 4$, every large $n$-vertex oriented graph $\\vec{G} = (V, \\vec{E})$ with minimum outdegree at least $(n+1)/3$ admits a (consistently) directed $\\ell$-cycle $\\vec{C}_{\\ell}$. Our latter result relates to one of Kelly, Kuhn, and Osthus, who proved a similar statement for oriented graphs with large semi-degree. Our proofs are based on the stability method.","PeriodicalId":44683,"journal":{"name":"Journal of Combinatorics","volume":"56 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2019-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/joc.2021.v12.n4.a4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 2

Abstract

Let $G = (V, E)$ be an $n$-vertex edge-colored graph. In 2013, H. Li proved that if every vertex $v \in V$ is incident to at least $(n+1)/2$ distinctly colored edges, then $G$ admits a rainbow triangle. We establish a corresponding result for fixed even rainbow $\ell$-cycles $C_{\ell}$: if every vertex $v \in V$ is incident to at least $(n+5)/3$ distinctly colored edges, where $n \geq n_0(\ell)$ is sufficiently large, then $G$ admits an even rainbow $\ell$-cycle $C_{\ell}$. This result is best possible whenever $\ell \not\equiv 0$ (mod 3). Correspondingly, we also show that for a fixed (even or odd) integer $\ell \geq 4$, every large $n$-vertex oriented graph $\vec{G} = (V, \vec{E})$ with minimum outdegree at least $(n+1)/3$ admits a (consistently) directed $\ell$-cycle $\vec{C}_{\ell}$. Our latter result relates to one of Kelly, Kuhn, and Osthus, who proved a similar statement for oriented graphs with large semi-degree. Our proofs are based on the stability method.
在偶彩虹或非三角形有向环上
设$G = (V, E)$为一个$n$顶点边色图。2013年,H. Li证明,如果每个顶点$v \in V$都与至少$(n+1)/2$条不同颜色的边相关,那么$G$承认彩虹三角形。我们建立了固定偶数彩虹$\ell$ -循环$C_{\ell}$的相应结果:如果每个顶点$v \in V$都与至少$(n+5)/3$个不同颜色的边相关,其中$n \geq n_0(\ell)$足够大,则$G$允许一个偶数彩虹$\ell$ -循环$C_{\ell}$。当$\ell \not\equiv 0$ (mod 3)时,这个结果是最好的。相应地,我们也表明,对于一个固定的(偶数或奇数)整数$\ell \geq 4$,每个大的$n$ -顶点定向图$\vec{G} = (V, \vec{E})$具有最小的外度至少$(n+1)/3$承认一个(一致的)有向$\ell$ -循环$\vec{C}_{\ell}$。我们的后一个结果与Kelly、Kuhn和Osthus的一个结果有关,他们对具有大半度的有向图证明了一个类似的陈述。我们的证明是基于稳定性方法的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Combinatorics
Journal of Combinatorics MATHEMATICS, APPLIED-
自引率
0.00%
发文量
21
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信