Improper Integral. Part I

IF 1 Q1 MATHEMATICS
N. Endou
{"title":"Improper Integral. Part I","authors":"N. Endou","doi":"10.2478/forma-2021-0019","DOIUrl":null,"url":null,"abstract":"Summary In this article, we deal with Riemann’s improper integral [1], using the Mizar system [2], [3]. Improper integrals with finite values are discussed in [5] by Yamazaki et al., but in general, improper integrals do not assume that they are finite. Therefore, we have formalized general improper integrals that does not limit the integral value to a finite value. In addition, each theorem in [5] assumes that the domain of integrand includes a closed interval, but since the improper integral should be discusses based on the half-open interval, we also corrected it.","PeriodicalId":42667,"journal":{"name":"Formalized Mathematics","volume":"21 1","pages":"201 - 220"},"PeriodicalIF":1.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Formalized Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/forma-2021-0019","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

Abstract

Summary In this article, we deal with Riemann’s improper integral [1], using the Mizar system [2], [3]. Improper integrals with finite values are discussed in [5] by Yamazaki et al., but in general, improper integrals do not assume that they are finite. Therefore, we have formalized general improper integrals that does not limit the integral value to a finite value. In addition, each theorem in [5] assumes that the domain of integrand includes a closed interval, but since the improper integral should be discusses based on the half-open interval, we also corrected it.
广义积分。第一部分
在本文中,我们使用Mizar系统处理黎曼反常积分[1],[3]。Yamazaki等人在[5]中讨论了有限值的反常积分,但一般来说,反常积分不假设它们是有限的。因此,我们已经形式化了不将积分值限制为有限值的一般反常积分。另外,[5]中的每个定理都假定被积域包含一个闭区间,但由于反常积分要在半开区间上讨论,我们也对其进行了修正。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Formalized Mathematics
Formalized Mathematics MATHEMATICS-
自引率
0.00%
发文量
0
审稿时长
10 weeks
期刊介绍: Formalized Mathematics is to be issued quarterly and publishes papers which are abstracts of Mizar articles contributed to the Mizar Mathematical Library (MML) - the basis of a knowledge management system for mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信