D. Eppstein, Danny Holten, M. Löffler, M. Nöllenburg, B. Speckmann, Kevin Verbeek
{"title":"Strict confluent drawing","authors":"D. Eppstein, Danny Holten, M. Löffler, M. Nöllenburg, B. Speckmann, Kevin Verbeek","doi":"10.20382/jocg.v7i1a2","DOIUrl":null,"url":null,"abstract":"We define strict confluent drawing, a form of confluent drawing in which the existence of an edge is indicated by the presence of a smooth path through a system of arcs and junctions (without crossings), and in which such a path, if it exists, must be unique. We prove that it is NP-complete to determine whether a given graph has a strict confluent drawing but polynomial to determine whether it has an outerplanar strict confluent drawing with a fixed vertex ordering (a drawing within a disk, with the vertices placed in a given order on the boundary).","PeriodicalId":43044,"journal":{"name":"Journal of Computational Geometry","volume":"5 1","pages":"352-363"},"PeriodicalIF":0.4000,"publicationDate":"2013-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20382/jocg.v7i1a2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 26
Abstract
We define strict confluent drawing, a form of confluent drawing in which the existence of an edge is indicated by the presence of a smooth path through a system of arcs and junctions (without crossings), and in which such a path, if it exists, must be unique. We prove that it is NP-complete to determine whether a given graph has a strict confluent drawing but polynomial to determine whether it has an outerplanar strict confluent drawing with a fixed vertex ordering (a drawing within a disk, with the vertices placed in a given order on the boundary).