{"title":"Multiplicity theorems involving functions with non-convex range","authors":"B. Ricceri","doi":"10.24193/subbmath.2023.1.09","DOIUrl":null,"url":null,"abstract":"\"Here is a sample of the results proved in this paper: Let $f:{\\bf R}\\to {\\bf R}$ be a continuous function, let $\\rho>0$ and let $\\omega:[0,\\rho[\\to [0,+\\infty[$ be a continuous increasing function such that $$\\lim\\limits_{\\xi\\to \\rho^-}\\ds\\int_0^{\\xi}\\omega(x)dx=+\\infty.$$ Consider $C^0([0,1])\\times C^0([0,1])$ endowed with the norm $$\\|(\\alpha,\\beta)\\|=\\int_0^1|\\alpha(t)|dt+\\int_0^1|\\beta(t)|dt.$$ Then, the following assertions are equivalent: \\noindent $(a)$ the restriction of $f$ to $\\left [-{{\\sqrt{\\rho}}\\over {2}},{{\\sqrt{\\rho}}\\over {2}} \\right ]$ is not constant; \\noindent $(b)$ for every convex set $S\\subseteq C^0([0,1])\\times C^0([0,1])$ dense in $C^0([0,1])\\times C^0([0,1])$, there exists $(\\alpha,\\beta)\\in S$ such that the problem $$\\left\\{\\begin{array}{l} -\\omega\\left(\\displaystyle\\int_0^1|u'(t)|^2dt\\right)u'' =\\beta(t)f(u)+\\alpha(t) \\mbox{ in } [0,1]\\\\ u(0)=u(1)=0\\\\ \\displaystyle\\int_0^1|u'(t)|^2dt<\\rho \\end{array}\\right.$$ has at least two classical solutions.\"","PeriodicalId":30022,"journal":{"name":"Studia Universitatis BabesBolyai Geologia","volume":"62 27","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studia Universitatis BabesBolyai Geologia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24193/subbmath.2023.1.09","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
"Here is a sample of the results proved in this paper: Let $f:{\bf R}\to {\bf R}$ be a continuous function, let $\rho>0$ and let $\omega:[0,\rho[\to [0,+\infty[$ be a continuous increasing function such that $$\lim\limits_{\xi\to \rho^-}\ds\int_0^{\xi}\omega(x)dx=+\infty.$$ Consider $C^0([0,1])\times C^0([0,1])$ endowed with the norm $$\|(\alpha,\beta)\|=\int_0^1|\alpha(t)|dt+\int_0^1|\beta(t)|dt.$$ Then, the following assertions are equivalent: \noindent $(a)$ the restriction of $f$ to $\left [-{{\sqrt{\rho}}\over {2}},{{\sqrt{\rho}}\over {2}} \right ]$ is not constant; \noindent $(b)$ for every convex set $S\subseteq C^0([0,1])\times C^0([0,1])$ dense in $C^0([0,1])\times C^0([0,1])$, there exists $(\alpha,\beta)\in S$ such that the problem $$\left\{\begin{array}{l} -\omega\left(\displaystyle\int_0^1|u'(t)|^2dt\right)u'' =\beta(t)f(u)+\alpha(t) \mbox{ in } [0,1]\\ u(0)=u(1)=0\\ \displaystyle\int_0^1|u'(t)|^2dt<\rho \end{array}\right.$$ has at least two classical solutions."