On the monopole Lefschetz number of finite-order diffeomorphisms

IF 2 1区 数学
Jianfeng Lin, Daniel Ruberman, N. Saveliev
{"title":"On the monopole Lefschetz number of finite-order diffeomorphisms","authors":"Jianfeng Lin, Daniel Ruberman, N. Saveliev","doi":"10.2140/gt.2021.25.3591","DOIUrl":null,"url":null,"abstract":"Let $K$ be a knot in an integral homology 3-sphere $Y$, and $\\Sigma$ the corresponding $n$-fold cyclic branched cover. Assuming that $\\Sigma$ is a rational homology sphere (which is always the case when $n$ is a prime power), we give a formula for the Lefschetz number of the action that the covering translation induces on the reduced monopole homology of $\\Sigma$. The proof relies on a careful analysis of the Seiberg--Witten equations on 3-orbifolds and of various $\\eta$-invariants. We give several applications of our formula: (1) we calculate the Seiberg--Witten and Furuta--Ohta invariants for the mapping tori of all semi-free actions of $Z/n$ on integral homology 3-spheres; (2) we give a novel obstruction (in terms of the Jones polynomial) for the branched cover of a knot in $S^3$ being an $L$-space; (3) we give a new set of knot concordance invariants in terms of the monopole Lefschetz numbers of covering translations on the branched covers.","PeriodicalId":55105,"journal":{"name":"Geometry & Topology","volume":"43 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2020-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geometry & Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2140/gt.2021.25.3591","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Let $K$ be a knot in an integral homology 3-sphere $Y$, and $\Sigma$ the corresponding $n$-fold cyclic branched cover. Assuming that $\Sigma$ is a rational homology sphere (which is always the case when $n$ is a prime power), we give a formula for the Lefschetz number of the action that the covering translation induces on the reduced monopole homology of $\Sigma$. The proof relies on a careful analysis of the Seiberg--Witten equations on 3-orbifolds and of various $\eta$-invariants. We give several applications of our formula: (1) we calculate the Seiberg--Witten and Furuta--Ohta invariants for the mapping tori of all semi-free actions of $Z/n$ on integral homology 3-spheres; (2) we give a novel obstruction (in terms of the Jones polynomial) for the branched cover of a knot in $S^3$ being an $L$-space; (3) we give a new set of knot concordance invariants in terms of the monopole Lefschetz numbers of covering translations on the branched covers.
有限阶微分同态的单极Lefschetz数
设K$为整同调三球Y$上的一个结,σ $为对应的n$折循环支盖。假设$\Sigma$是一个有理同调球(当$n$是素数幂时总是如此),我们给出了覆盖平移对$\Sigma$的约化单极同调所引起的作用的Lefschetz数的公式。该证明依赖于对3-轨道上的Seiberg- Witten方程和各种$\eta$不变量的仔细分析。我们给出了该公式的几个应用:(1)我们计算了$Z/n$在整同调3球上所有半自由作用的映射环面的Seiberg—Witten和Furuta—Ohta不变量;(2)对于$S^3$为$L$-空间中的一个结的分支覆盖,我们给出了一个新的阻碍(用Jones多项式表示);(3)给出了分支盖上覆盖平移的单极Lefschetz数的一组新的结调和不变量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Geometry & Topology
Geometry & Topology 数学-数学
自引率
5.00%
发文量
34
期刊介绍: Geometry and Topology is a fully refereed journal covering all of geometry and topology, broadly understood. G&T is published in electronic and print formats by Mathematical Sciences Publishers. The purpose of Geometry & Topology is the advancement of mathematics. Editors evaluate submitted papers strictly on the basis of scientific merit, without regard to authors" nationality, country of residence, institutional affiliation, sex, ethnic origin, or political views.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信