Analog / Radio-Frequency Performance Analysis of Nanometer Negative Capacitance Fully Depleted Silicon-On-Insulator Transistors

IF 0.6 4区 工程技术 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC
Peng Si, Kai Zhang, Tianyu Yu, Zhifeng Zhao, Wei-feng Lü
{"title":"Analog / Radio-Frequency Performance Analysis of Nanometer Negative Capacitance Fully Depleted Silicon-On-Insulator Transistors","authors":"Peng Si, Kai Zhang, Tianyu Yu, Zhifeng Zhao, Wei-feng Lü","doi":"10.33180/infmidem2020.105","DOIUrl":null,"url":null,"abstract":"The negative capacitance field-effect transistor can break the limitation of the Boltzmann tyranny. In this study, the analog and radio-frequency (RF) performance of a nanometer negative-capacitance fully depleted silicon-on-insulator (NC-FDSOI) transistor is investigated. The analog/RF parameters of the NC-FDSOI device are compared with the conventional FDSOI counterparts for transconductance, output conductance, gate capacitance, cutoff frequency, and maximum oscillation frequency. In addition, the effect of ferroelectric thickness on the analog/RF performance of NC-FDSOI device is analyzed and discussed. The results show that even when operated at low voltages, NC-FDSOI transistors enable analog/RF performance improvement in traditional FDSOI counterparts at low power in the case of a suitable ferroelectric thickness.","PeriodicalId":56293,"journal":{"name":"Informacije Midem-Journal of Microelectronics Electronic Components and Materials","volume":"30 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Informacije Midem-Journal of Microelectronics Electronic Components and Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.33180/infmidem2020.105","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 1

Abstract

The negative capacitance field-effect transistor can break the limitation of the Boltzmann tyranny. In this study, the analog and radio-frequency (RF) performance of a nanometer negative-capacitance fully depleted silicon-on-insulator (NC-FDSOI) transistor is investigated. The analog/RF parameters of the NC-FDSOI device are compared with the conventional FDSOI counterparts for transconductance, output conductance, gate capacitance, cutoff frequency, and maximum oscillation frequency. In addition, the effect of ferroelectric thickness on the analog/RF performance of NC-FDSOI device is analyzed and discussed. The results show that even when operated at low voltages, NC-FDSOI transistors enable analog/RF performance improvement in traditional FDSOI counterparts at low power in the case of a suitable ferroelectric thickness.
纳米负电容全耗尽绝缘体上硅晶体管的模拟/射频性能分析
负电容场效应晶体管可以打破玻尔兹曼暴政的限制。在这项研究中,研究了纳米负电容完全耗尽绝缘体上硅(NC-FDSOI)晶体管的模拟和射频(RF)性能。将NC-FDSOI器件的模拟/射频参数与传统FDSOI器件的跨导、输出电导、栅极电容、截止频率和最大振荡频率进行了比较。此外,还分析讨论了铁电厚度对NC-FDSOI器件模拟/射频性能的影响。结果表明,即使在低电压下工作,NC-FDSOI晶体管在合适的铁电厚度的情况下,也能在低功耗下提高传统FDSOI晶体管的模拟/RF性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.80
自引率
0.00%
发文量
10
审稿时长
>12 weeks
期刊介绍: Informacije MIDEM publishes original research papers in the fields of microelectronics, electronic components and materials. Review papers are published upon invitation only. Scientific novelty and potential interest for a wider spectrum of readers is desired. Authors are encouraged to provide as much detail as possible for others to be able to replicate their results. Therefore, there is no page limit, provided that the text is concise and comprehensive, and any data that does not fit within a classical manuscript can be added as supplementary material. Topics of interest include: Microelectronics, Semiconductor devices, Nanotechnology, Electronic circuits and devices, Electronic sensors and actuators, Microelectromechanical systems (MEMS), Medical electronics, Bioelectronics, Power electronics, Embedded system electronics, System control electronics, Signal processing, Microwave and millimetre-wave techniques, Wireless and optical communications, Antenna technology, Optoelectronics, Photovoltaics, Ceramic materials for electronic devices, Thick and thin film materials for electronic devices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信