Medical target prediction from genome sequence: combining different sequence analysis algorithms with expert knowledge and input from artificial intelligence approaches

Thomas Dandekar , Fuli Du , R.Heiner Schirmer , Steffen Schmidt
{"title":"Medical target prediction from genome sequence: combining different sequence analysis algorithms with expert knowledge and input from artificial intelligence approaches","authors":"Thomas Dandekar ,&nbsp;Fuli Du ,&nbsp;R.Heiner Schirmer ,&nbsp;Steffen Schmidt","doi":"10.1016/S0097-8485(01)00095-X","DOIUrl":null,"url":null,"abstract":"<div><p>By exploiting the rapid increase in available sequence data, the definition of medically relevant protein targets has been improved by a combination of: (i) differential genome analysis (target list); and (ii) analysis of individual proteins (target analysis). Fast sequence comparisons, data mining, and genetic algorithms further promote these procedures. <em>Mycobacterium</em> <em>tuberculosis</em> proteins were chosen as applied examples.</p></div>","PeriodicalId":79331,"journal":{"name":"Computers & chemistry","volume":"26 1","pages":"Pages 15-21"},"PeriodicalIF":0.0000,"publicationDate":"2001-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S0097-8485(01)00095-X","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & chemistry","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S009784850100095X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

By exploiting the rapid increase in available sequence data, the definition of medically relevant protein targets has been improved by a combination of: (i) differential genome analysis (target list); and (ii) analysis of individual proteins (target analysis). Fast sequence comparisons, data mining, and genetic algorithms further promote these procedures. Mycobacterium tuberculosis proteins were chosen as applied examples.

从基因组序列预测医学靶标:将不同的序列分析算法与专家知识和人工智能方法的输入相结合
利用现有序列数据的迅速增加,通过以下结合改进了医学相关蛋白质靶点的定义:(i)差异基因组分析(靶点列表);(ii)单个蛋白质的分析(靶分析)。快速序列比较、数据挖掘和遗传算法进一步促进了这些过程。以结核分枝杆菌蛋白为应用实例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信