GENERALIZATIONS OF C3 MODULES AND C4 MODULES

IF 0.2 4区 数学 Q4 MATHEMATICS
Zhanmin Zhu
{"title":"GENERALIZATIONS OF C3 MODULES AND C4 MODULES","authors":"Zhanmin Zhu","doi":"10.59277/mrar.2023.25.75.1.187","DOIUrl":null,"url":null,"abstract":"\"Let A be a class of right R-modules that is closed under isomorphisms, and let M be a right R-module. Then M is called A -C3 if, whenever N and K are direct summands of M with N ∩K = 0 and K ∈ A , then N ⊕K is also a direct summand of M; M is called an A -C4 module, if whenever M = A⊕B where A and B are submodules of M and A ∈ A , then every monomorphism f : A → B splits. Some characterizations and properties of these classes of modules are investigated. As applications, some new characterizations of semisimple artinian rings, right V-rings, quasi-Frobenius rings and von Neumann regular rings are given.\"","PeriodicalId":49858,"journal":{"name":"Mathematical Reports","volume":"130 ","pages":""},"PeriodicalIF":0.2000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Reports","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.59277/mrar.2023.25.75.1.187","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

Abstract

"Let A be a class of right R-modules that is closed under isomorphisms, and let M be a right R-module. Then M is called A -C3 if, whenever N and K are direct summands of M with N ∩K = 0 and K ∈ A , then N ⊕K is also a direct summand of M; M is called an A -C4 module, if whenever M = A⊕B where A and B are submodules of M and A ∈ A , then every monomorphism f : A → B splits. Some characterizations and properties of these classes of modules are investigated. As applications, some new characterizations of semisimple artinian rings, right V-rings, quasi-Frobenius rings and von Neumann regular rings are given."
c3模块和c4模块的推广
"设A是一类在同构下闭合的右r模,设M是一个右r模。则M称为A -C3,当N和K是M的N∩K = 0且K∈A的直接和时,则N⊕K也是M的直接和;M称为A -C4模,如果当M = A⊕B且A和B是M和A∈A的子模时,则每个单态f: A→B分裂。研究了这类模块的一些表征和性质。作为应用,给出了半单环、右v环、拟frobenius环和von Neumann正则环的一些新的性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Mathematical Reports
Mathematical Reports MATHEMATICS-
CiteScore
0.20
自引率
0.00%
发文量
1
审稿时长
>12 weeks
期刊介绍: The journal MATHEMATICAL REPORTS (formerly STUDII SI CERCETARI MATEMATICE) was founded in 1948 by the Mathematics Section of the Romanian Academy. It appeared under its first name until 1998 and received the name of Mathematical Reports in 1999. It is now published in one volume a year, consisting in 4 issues. The current average total number of pages is 500. Our journal MATHEMATICAL REPORTS publishes original mathematical papers, written in English. Excellent survey articles may be also accepted. The editors will put strong emphasis on originality, quality and applicability.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信