Approximately symmetric forms far from being exactly symmetric

IF 0.9 4区 数学 Q3 COMPUTER SCIENCE, THEORY & METHODS
L. Mili'cevi'c
{"title":"Approximately symmetric forms far from being exactly symmetric","authors":"L. Mili'cevi'c","doi":"10.1017/s0963548322000244","DOIUrl":null,"url":null,"abstract":"\n\t <jats:p>Let <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548322000244_inline1.png\" />\n\t\t<jats:tex-math>\n$V$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> be a finite-dimensional vector space over <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548322000244_inline2.png\" />\n\t\t<jats:tex-math>\n$\\mathbb{F}_p$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula>. We say that a multilinear form <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548322000244_inline3.png\" />\n\t\t<jats:tex-math>\n$\\alpha \\colon V^k \\to \\mathbb{F}_p$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> in <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548322000244_inline4.png\" />\n\t\t<jats:tex-math>\n$k$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> variables is <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548322000244_inline5.png\" />\n\t\t<jats:tex-math>\n$d$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula>-<jats:italic>approximately symmetric</jats:italic> if the partition rank of difference <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548322000244_inline6.png\" />\n\t\t<jats:tex-math>\n$\\alpha (x_1, \\ldots, x_k) - \\alpha (x_{\\pi (1)}, \\ldots, x_{\\pi (k)})$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> is at most <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548322000244_inline7.png\" />\n\t\t<jats:tex-math>\n$d$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> for every permutation <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548322000244_inline8.png\" />\n\t\t<jats:tex-math>\n$\\pi \\in \\textrm{Sym}_k$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula>. In a work concerning the inverse theorem for the Gowers uniformity <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548322000244_inline9.png\" />\n\t\t<jats:tex-math>\n$\\|\\!\\cdot\\! \\|_{\\mathsf{U}^4}$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> norm in the case of low characteristic, Tidor conjectured that any <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548322000244_inline10.png\" />\n\t\t<jats:tex-math>\n$d$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula>-approximately symmetric multilinear form <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548322000244_inline11.png\" />\n\t\t<jats:tex-math>\n$\\alpha \\colon V^k \\to \\mathbb{F}_p$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> differs from a symmetric multilinear form by a multilinear form of partition rank at most <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548322000244_inline12.png\" />\n\t\t<jats:tex-math>\n$O_{p,k,d}(1)$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> and proved this conjecture in the case of trilinear forms. In this paper, somewhat surprisingly, we show that this conjecture is false. In fact, we show that approximately symmetric forms can be quite far from the symmetric ones, by constructing a multilinear form <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548322000244_inline13.png\" />\n\t\t<jats:tex-math>\n$\\alpha \\colon \\mathbb{F}_2^n \\times \\mathbb{F}_2^n \\times \\mathbb{F}_2^n \\times \\mathbb{F}_2^n \\to \\mathbb{F}_2$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> which is 3-approximately symmetric, while the difference between <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548322000244_inline14.png\" />\n\t\t<jats:tex-math>\n$\\alpha$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula> and any symmetric multilinear form is of partition rank at least <jats:inline-formula>\n\t <jats:alternatives>\n\t\t<jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0963548322000244_inline15.png\" />\n\t\t<jats:tex-math>\n$\\Omega (\\sqrt [3]{n})$\n</jats:tex-math>\n\t </jats:alternatives>\n\t </jats:inline-formula>.</jats:p>","PeriodicalId":10513,"journal":{"name":"Combinatorics, Probability & Computing","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2021-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorics, Probability & Computing","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s0963548322000244","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 3

Abstract

Let $V$ be a finite-dimensional vector space over $\mathbb{F}_p$ . We say that a multilinear form $\alpha \colon V^k \to \mathbb{F}_p$ in $k$ variables is $d$ -approximately symmetric if the partition rank of difference $\alpha (x_1, \ldots, x_k) - \alpha (x_{\pi (1)}, \ldots, x_{\pi (k)})$ is at most $d$ for every permutation $\pi \in \textrm{Sym}_k$ . In a work concerning the inverse theorem for the Gowers uniformity $\|\!\cdot\! \|_{\mathsf{U}^4}$ norm in the case of low characteristic, Tidor conjectured that any $d$ -approximately symmetric multilinear form $\alpha \colon V^k \to \mathbb{F}_p$ differs from a symmetric multilinear form by a multilinear form of partition rank at most $O_{p,k,d}(1)$ and proved this conjecture in the case of trilinear forms. In this paper, somewhat surprisingly, we show that this conjecture is false. In fact, we show that approximately symmetric forms can be quite far from the symmetric ones, by constructing a multilinear form $\alpha \colon \mathbb{F}_2^n \times \mathbb{F}_2^n \times \mathbb{F}_2^n \times \mathbb{F}_2^n \to \mathbb{F}_2$ which is 3-approximately symmetric, while the difference between $\alpha$ and any symmetric multilinear form is of partition rank at least $\Omega (\sqrt [3]{n})$ .
近似对称的形式远不是完全对称的
设$V$是$\mathbb{F}_p$上的有限维向量空间。我们说$k$变量中的多元线性形式$\alpha \colon V^k \to \mathbb{F}_p$是$d$ -近似对称的,如果对于每个排列$\pi \in \textrm{Sym}_k$,差分$\alpha (x_1, \ldots, x_k) - \alpha (x_{\pi (1)}, \ldots, x_{\pi (k)})$的划分秩最多为$d$。Tidor在一篇关于低特征情况下Gowers均匀性$\|\!\cdot\! \|_{\mathsf{U}^4}$范数的反定理的著作中,推测任何$d$ -近似对称的多线性形式$\alpha \colon V^k \to \mathbb{F}_p$与对称的多线性形式最多有一个分秩的多线性形式$O_{p,k,d}(1)$的区别,并在三线性形式的情况下证明了这一猜想。在本文中,有些令人惊讶的是,我们证明了这个猜想是错误的。事实上,通过构造一个3-近似对称的多元线性形式$\alpha \colon \mathbb{F}_2^n \times \mathbb{F}_2^n \times \mathbb{F}_2^n \times \mathbb{F}_2^n \to \mathbb{F}_2$,我们证明了近似对称的形式可以与对称的形式相距甚远,而$\alpha$与任何对称的多元线性形式的区别至少为$\Omega (\sqrt [3]{n})$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Combinatorics, Probability & Computing
Combinatorics, Probability & Computing 数学-计算机:理论方法
CiteScore
2.40
自引率
11.10%
发文量
33
审稿时长
6-12 weeks
期刊介绍: Published bimonthly, Combinatorics, Probability & Computing is devoted to the three areas of combinatorics, probability theory and theoretical computer science. Topics covered include classical and algebraic graph theory, extremal set theory, matroid theory, probabilistic methods and random combinatorial structures; combinatorial probability and limit theorems for random combinatorial structures; the theory of algorithms (including complexity theory), randomised algorithms, probabilistic analysis of algorithms, computational learning theory and optimisation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信