Circumvolution of Centre Pixel Algorithm in Pixel Value Differencing Steganography Model in the Spatial Domain

K. S. Suresh, T. Kamalakannan
{"title":"Circumvolution of Centre Pixel Algorithm in Pixel Value Differencing Steganography Model in the Spatial Domain","authors":"K. S. Suresh, T. Kamalakannan","doi":"10.1109/IDCIoT56793.2023.10053536","DOIUrl":null,"url":null,"abstract":"Sending and receiving sensitive information through any data channel is always a challenging task because of the enormous proliferation of the computer industry. Since steganography algorithms are routinely used to share data, cryptography algorithms have been around for the same objective for a long time, but these cryptographic algorithms are easily brute-forced. Furthermore, more research works have been focused on Steganography models. Initially, steganography models start with a simple LSB data insertion model, which accepts only a limited payload and is easily vulnerable. The PVD algorithms encapsulate more data than conventional LSB approaches whereas still affording a reasonable level of protection to private data. In order to find the set of pixels that can safely store more data bits using circumvolution of the centre pixel algorithm in the PVD domain. This model can embed more data bits when compared with the conventional LSB models. The Confidential data is protected with excellent security with double- layered information hiding. The suggested approach achieves good PSNR and MSE scores and keeps up great quality when more data is added to the stego-image.","PeriodicalId":60583,"journal":{"name":"物联网技术","volume":"57 12","pages":"312-319"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"物联网技术","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.1109/IDCIoT56793.2023.10053536","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Sending and receiving sensitive information through any data channel is always a challenging task because of the enormous proliferation of the computer industry. Since steganography algorithms are routinely used to share data, cryptography algorithms have been around for the same objective for a long time, but these cryptographic algorithms are easily brute-forced. Furthermore, more research works have been focused on Steganography models. Initially, steganography models start with a simple LSB data insertion model, which accepts only a limited payload and is easily vulnerable. The PVD algorithms encapsulate more data than conventional LSB approaches whereas still affording a reasonable level of protection to private data. In order to find the set of pixels that can safely store more data bits using circumvolution of the centre pixel algorithm in the PVD domain. This model can embed more data bits when compared with the conventional LSB models. The Confidential data is protected with excellent security with double- layered information hiding. The suggested approach achieves good PSNR and MSE scores and keeps up great quality when more data is added to the stego-image.
空间域像素值差分隐写模型中中心像素的旋转算法
由于计算机工业的巨大发展,通过任何数据通道发送和接收敏感信息一直是一项具有挑战性的任务。由于隐写算法通常用于共享数据,加密算法已经为相同的目标存在了很长时间,但这些加密算法很容易被暴力破解。此外,越来越多的研究工作集中在隐写模型上。最初,隐写模型从一个简单的LSB数据插入模型开始,该模型只接受有限的有效载荷,并且很容易受到攻击。PVD算法比传统的LSB方法封装了更多的数据,同时仍然为私有数据提供了合理的保护级别。为了找到能够在PVD域内安全地存储更多数据位的像素集,采用中心像素的旋转算法。与传统的LSB模型相比,该模型可以嵌入更多的数据位。机密数据采用双层信息隐藏,具有良好的安全性。该方法获得了较好的PSNR和MSE分数,并且在添加更多数据到隐写图像时仍能保持较高的质量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
5689
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信