{"title":"Effect of fuzziness on the stability of inertial neural networks with mixed delay via non-reduced-order method","authors":"C. Aouiti, El Abed Assali","doi":"10.1080/23799927.2019.1685006","DOIUrl":null,"url":null,"abstract":"ABSTRACT In this paper, without transforming the original inertial neural networks into the first-order differential equation by some variable substitutions, fuzziness, time-varying and distributed delays are introduced into inertial networks and the existence, the uniqueness and the asymptotic stability for the neural networks are investigated. The existence of a unique equilibrium point is proved by using inequality techniques, and the properties of an M-matrix. By finding a new Lyapunov–Krasovskii functional, some sufficient conditions are derived ensuring the asymptotic stability. Finally, three numerical examples with simulation are presented to show the effectiveness of our theoretical results.","PeriodicalId":37216,"journal":{"name":"International Journal of Computer Mathematics: Computer Systems Theory","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2019-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1080/23799927.2019.1685006","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Computer Mathematics: Computer Systems Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/23799927.2019.1685006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 13
Abstract
ABSTRACT In this paper, without transforming the original inertial neural networks into the first-order differential equation by some variable substitutions, fuzziness, time-varying and distributed delays are introduced into inertial networks and the existence, the uniqueness and the asymptotic stability for the neural networks are investigated. The existence of a unique equilibrium point is proved by using inequality techniques, and the properties of an M-matrix. By finding a new Lyapunov–Krasovskii functional, some sufficient conditions are derived ensuring the asymptotic stability. Finally, three numerical examples with simulation are presented to show the effectiveness of our theoretical results.