Combined effects of ethylene scavenging‐active packaging system and modified atmosphere to reduce postharvest losses of ethylene sensitive produce: Banana and kiwifruit
{"title":"Combined effects of ethylene scavenging‐active packaging system and modified atmosphere to reduce postharvest losses of ethylene sensitive produce: Banana and kiwifruit","authors":"M. Öztürk, Z. Ayhan","doi":"10.1002/pts.2764","DOIUrl":null,"url":null,"abstract":"Ethylene scavenging‐active packaging is getting more interest to reduce postharvest losses of ethylene‐sensitive produce to overcome the limitations of traditional postharvest technologies. The aim of this study is to monitor behaviour of ethylene‐sensitive products to different ethylene scavenging systems combined with modified atmosphere packaging (MAP). Banana (Musa paradisicum L. var. Anamur) and kiwi (Actinidia deliciosa L. var. Hayward) were packaged with low‐density polyethylene (LDPE) bags containing ethylene scavenging sachet and ethylene scavenging‐active LDPE bags. Only passive MAP was used for bananas stored at 13°C for 12 d. Both passive and active MAP (5% O2, 5% CO2) were used for kiwi stored at 4°C for 30 d. LDPE bags with no ethylene absorber and unpackaged produces were the control groups. O2, CO2 and ethylene concentrations, mass loss, texture, colour, TSS %, titratable acidity and sensory analysis were performed during storage. O2% in the control LDPE bags decreased below 2% on 6th d, while LDPE bags containing sachet and active LDPE bags remained above critical O2 level for bananas during the entire storage. The lowest ethylene concentration was 0.45 μl L−1 in both active systems on 12th d. Equilibrium atmosphere was maintained in active and passive MAP after 5th d for kiwifruit. The lowest ethylene concentrations were determined as 0.47 μl L−1 and 0.50 μl L−1 in the sachet included LDPE and active LDPE, respectively under passive MAP at the end of the storage. In conclusion, bananas packaged with both active systems were acceptable for 9 d considering physicochemical and sensory properties. The kiwifruit was acceptable for 30 d using both ethylene absorbing systems under passive MAP.","PeriodicalId":19626,"journal":{"name":"Packaging Technology and Science","volume":"20 6","pages":"951 - 967"},"PeriodicalIF":2.8000,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Packaging Technology and Science","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/pts.2764","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
引用次数: 0
Abstract
Ethylene scavenging‐active packaging is getting more interest to reduce postharvest losses of ethylene‐sensitive produce to overcome the limitations of traditional postharvest technologies. The aim of this study is to monitor behaviour of ethylene‐sensitive products to different ethylene scavenging systems combined with modified atmosphere packaging (MAP). Banana (Musa paradisicum L. var. Anamur) and kiwi (Actinidia deliciosa L. var. Hayward) were packaged with low‐density polyethylene (LDPE) bags containing ethylene scavenging sachet and ethylene scavenging‐active LDPE bags. Only passive MAP was used for bananas stored at 13°C for 12 d. Both passive and active MAP (5% O2, 5% CO2) were used for kiwi stored at 4°C for 30 d. LDPE bags with no ethylene absorber and unpackaged produces were the control groups. O2, CO2 and ethylene concentrations, mass loss, texture, colour, TSS %, titratable acidity and sensory analysis were performed during storage. O2% in the control LDPE bags decreased below 2% on 6th d, while LDPE bags containing sachet and active LDPE bags remained above critical O2 level for bananas during the entire storage. The lowest ethylene concentration was 0.45 μl L−1 in both active systems on 12th d. Equilibrium atmosphere was maintained in active and passive MAP after 5th d for kiwifruit. The lowest ethylene concentrations were determined as 0.47 μl L−1 and 0.50 μl L−1 in the sachet included LDPE and active LDPE, respectively under passive MAP at the end of the storage. In conclusion, bananas packaged with both active systems were acceptable for 9 d considering physicochemical and sensory properties. The kiwifruit was acceptable for 30 d using both ethylene absorbing systems under passive MAP.
期刊介绍:
Packaging Technology & Science publishes original research, applications and review papers describing significant, novel developments in its field.
The Journal welcomes contributions in a wide range of areas in packaging technology and science, including:
-Active packaging
-Aseptic and sterile packaging
-Barrier packaging
-Design methodology
-Environmental factors and sustainability
-Ergonomics
-Food packaging
-Machinery and engineering for packaging
-Marketing aspects of packaging
-Materials
-Migration
-New manufacturing processes and techniques
-Testing, analysis and quality control
-Transport packaging