A new approach on approximate controllability of Sobolev-type Hilfer fractional differential equations

IF 2.2 Q1 MATHEMATICS, APPLIED
Ritika Pandey, Chandan Shukla, A. Shukla, A. Upadhyay, A. Singh
{"title":"A new approach on approximate controllability of Sobolev-type Hilfer fractional differential equations","authors":"Ritika Pandey, Chandan Shukla, A. Shukla, A. Upadhyay, A. Singh","doi":"10.11121/ijocta.2023.1256","DOIUrl":null,"url":null,"abstract":"The approximate controllability of Sobolev-type Hilfer fractional control differential systems is the main emphasis of this paper. We use fractional calculus, Gronwall's inequality, semigroup theory, and the Cauchy sequence to examine the main results for the proposed system. The application of well-known fixed point theorem methodologies is avoided in this paper. Finally, a fractional heat equation is discussed as an example.","PeriodicalId":37369,"journal":{"name":"International Journal of Optimization and Control: Theories and Applications","volume":"7 5","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2023-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Optimization and Control: Theories and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11121/ijocta.2023.1256","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 2

Abstract

The approximate controllability of Sobolev-type Hilfer fractional control differential systems is the main emphasis of this paper. We use fractional calculus, Gronwall's inequality, semigroup theory, and the Cauchy sequence to examine the main results for the proposed system. The application of well-known fixed point theorem methodologies is avoided in this paper. Finally, a fractional heat equation is discussed as an example.
sobolev型Hilfer分数阶微分方程近似可控性的新方法
本文主要研究sobolev型Hilfer分数阶控制微分系统的近似可控性。我们使用分数阶微积分、Gronwall不等式、半群理论和柯西序列来检验所提出系统的主要结果。本文避免了众所周知的不动点定理方法的应用。最后,以分数阶热方程为例进行了讨论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.30
自引率
6.20%
发文量
13
审稿时长
16 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信