{"title":"Hilbert-type inequalities in homogeneous cones","authors":"G. Garrigós, C. Nana","doi":"10.4171/RLM/916","DOIUrl":null,"url":null,"abstract":"We prove L-L bounds for the class of Hilbert-type operators associated with generalized powers Q in a homogeneous cone Ω. Our results extend and slightly improve earlier work from [10], where the problem was considered for scalar powers α = (α, . . . , α) and symmetric cones Ω. We give a more transparent proof, provide new examples, and briefly discuss a long standing open question regarding characterization of L boundedness for the case of vector indices α.","PeriodicalId":54497,"journal":{"name":"Rendiconti Lincei-Matematica e Applicazioni","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2021-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rendiconti Lincei-Matematica e Applicazioni","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4171/RLM/916","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3
Abstract
We prove L-L bounds for the class of Hilbert-type operators associated with generalized powers Q in a homogeneous cone Ω. Our results extend and slightly improve earlier work from [10], where the problem was considered for scalar powers α = (α, . . . , α) and symmetric cones Ω. We give a more transparent proof, provide new examples, and briefly discuss a long standing open question regarding characterization of L boundedness for the case of vector indices α.
期刊介绍:
The journal is dedicated to the publication of high-quality peer-reviewed surveys, research papers and preliminary announcements of important results from all fields of mathematics and its applications.