An approximate C1 multi-patch space for isogeometric analysis with a comparison to Nitsche’s method

IF 7.3 1区 工程技术 Q1 ENGINEERING, MULTIDISCIPLINARY
Pascal Weinmüller , Thomas Takacs
{"title":"An approximate C1 multi-patch space for isogeometric analysis with a comparison to Nitsche’s method","authors":"Pascal Weinmüller ,&nbsp;Thomas Takacs","doi":"10.1016/j.cma.2022.115592","DOIUrl":null,"url":null,"abstract":"<div><p>We present an approximately <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span>-smooth multi-patch spline construction which can be used in isogeometric analysis (IGA). The construction extends the one presented in <span>[1]</span> for two-patch domains. A key property of IGA is that it is simple to achieve high order smoothness within a single patch. However, to represent more complex geometries one often uses a multi-patch construction. In this case, the global continuity for the basis functions is in general only <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>0</mn></mrow></msup></math></span>. Therefore, to obtain <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span>-smooth isogeometric functions, a special construction for the basis is needed. Such spaces are of interest when solving numerically fourth-order problems, such as the biharmonic equation or Kirchhoff–Love plate/shell formulations, using an isogeometric Galerkin method.</p><p>Isogeometric spaces that are globally <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> over multi-patch domains can be constructed as in <span>[2]</span>, <span>[3]</span>, <span>[4]</span>, <span>[5]</span>, <span>[6]</span>. The constructions require geometry parametrizations that satisfy certain constraints along the interfaces, so-called analysis-suitable <span><math><msup><mrow><mi>G</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> parametrizations. To allow <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> spaces over more general multi-patch parametrizations, one needs to increase the polynomial degree and/or to relax the <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> conditions. Thus, we define function spaces that are not exactly <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> but only approximately. We adopt the construction for two-patch domains, as developed in <span>[1]</span>, and extend it to more general multi-patch domains.</p><p>We employ the construction for a biharmonic model problem and compare the results with Nitsche’s method. We compare both methods over complex multi-patch domains with non-trivial interfaces. The numerical tests indicate that the proposed construction converges optimally under <span><math><mi>h</mi></math></span>-refinement, comparable to the solution using Nitsche’s method. In contrast to weakly imposing coupling conditions, the approximate <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> construction is explicit and no additional terms need to be introduced to stabilize the method/penalize the jump of the derivative at the interface. Thus, the new proposed method can be used more easily as no parameters need to be estimated.</p></div>","PeriodicalId":55222,"journal":{"name":"Computer Methods in Applied Mechanics and Engineering","volume":"401 ","pages":"Article 115592"},"PeriodicalIF":7.3000,"publicationDate":"2022-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S004578252200559X/pdfft?md5=f6153f5fb1560da09782cef7b4900808&pid=1-s2.0-S004578252200559X-main.pdf","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Methods in Applied Mechanics and Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S004578252200559X","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 6

Abstract

We present an approximately C1-smooth multi-patch spline construction which can be used in isogeometric analysis (IGA). The construction extends the one presented in [1] for two-patch domains. A key property of IGA is that it is simple to achieve high order smoothness within a single patch. However, to represent more complex geometries one often uses a multi-patch construction. In this case, the global continuity for the basis functions is in general only C0. Therefore, to obtain C1-smooth isogeometric functions, a special construction for the basis is needed. Such spaces are of interest when solving numerically fourth-order problems, such as the biharmonic equation or Kirchhoff–Love plate/shell formulations, using an isogeometric Galerkin method.

Isogeometric spaces that are globally C1 over multi-patch domains can be constructed as in [2], [3], [4], [5], [6]. The constructions require geometry parametrizations that satisfy certain constraints along the interfaces, so-called analysis-suitable G1 parametrizations. To allow C1 spaces over more general multi-patch parametrizations, one needs to increase the polynomial degree and/or to relax the C1 conditions. Thus, we define function spaces that are not exactly C1 but only approximately. We adopt the construction for two-patch domains, as developed in [1], and extend it to more general multi-patch domains.

We employ the construction for a biharmonic model problem and compare the results with Nitsche’s method. We compare both methods over complex multi-patch domains with non-trivial interfaces. The numerical tests indicate that the proposed construction converges optimally under h-refinement, comparable to the solution using Nitsche’s method. In contrast to weakly imposing coupling conditions, the approximate C1 construction is explicit and no additional terms need to be introduced to stabilize the method/penalize the jump of the derivative at the interface. Thus, the new proposed method can be used more easily as no parameters need to be estimated.

一个近似的C1多块空间,用于等几何分析,并与Nitsche方法进行比较
提出了一种近似c1光滑的多块样条结构,可用于等几何分析(IGA)。该构造扩展了[1]中提出的用于双补丁域的构造。IGA的一个关键特性是它很容易在单个补丁内实现高阶平滑。然而,为了表示更复杂的几何形状,人们经常使用多块结构。在这种情况下,基函数的整体连续性一般只有C0。因此,为了得到c1 -光滑等几何函数,需要对基进行特殊的构造。当使用等几何伽辽金方法解决数值四阶问题时,这些空间很有趣,例如双调和方程或Kirchhoff-Love板/壳公式。可以按照[2]、[3]、[4]、[5]、[6]的方法构造多patch域上全局为C1的等几何空间。这种结构需要几何参数化,以满足沿界面的某些约束,即所谓的适合分析的G1参数化。为了在更一般的多补丁参数化上允许C1空间,需要增加多项式度和/或放宽C1条件。因此,我们定义的函数空间不完全是C1,而是近似的。我们采用了[1]中提出的双补丁域的结构,并将其扩展到更一般的多补丁域。我们采用双谐模型问题的构造,并将结果与Nitsche方法进行比较。我们在具有非平凡接口的复杂多补丁域上比较了这两种方法。数值试验表明,该结构在h-精化条件下具有最优收敛性,与Nitsche方法的解相当。与弱耦合条件相比,近似的C1结构是明确的,不需要引入额外的条款来稳定方法/惩罚界面处导数的跳跃。因此,该方法不需要估计参数,使用方便。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
12.70
自引率
15.30%
发文量
719
审稿时长
44 days
期刊介绍: Computer Methods in Applied Mechanics and Engineering stands as a cornerstone in the realm of computational science and engineering. With a history spanning over five decades, the journal has been a key platform for disseminating papers on advanced mathematical modeling and numerical solutions. Interdisciplinary in nature, these contributions encompass mechanics, mathematics, computer science, and various scientific disciplines. The journal welcomes a broad range of computational methods addressing the simulation, analysis, and design of complex physical problems, making it a vital resource for researchers in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信