{"title":"Identifying a space-dependent source term in distributed order time-fractional diffusion equations","authors":"Dinh Nguyen Duy Hai","doi":"10.3934/mcrf.2022025","DOIUrl":null,"url":null,"abstract":"The aim of this paper is to investigate an inverse problem of recovering a space-dependent source term governed by distributed order time-fractional diffusion equations in Hilbert scales. Such a problem is ill-posed and has important practical applications. For this problem, we propose a general regularization method based on the idea of the filter method. With a suitable source condition, we prove that the method is of optimal order under various choices of regularization parameter. One is based on the a priori regularization parameter choice rule and another one is the discrepancy principle. Finally, the capabilities of our method are illustrated by both the Tikhonov and the Landweber method.","PeriodicalId":48889,"journal":{"name":"Mathematical Control and Related Fields","volume":"89 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Control and Related Fields","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.3934/mcrf.2022025","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1
Abstract
The aim of this paper is to investigate an inverse problem of recovering a space-dependent source term governed by distributed order time-fractional diffusion equations in Hilbert scales. Such a problem is ill-posed and has important practical applications. For this problem, we propose a general regularization method based on the idea of the filter method. With a suitable source condition, we prove that the method is of optimal order under various choices of regularization parameter. One is based on the a priori regularization parameter choice rule and another one is the discrepancy principle. Finally, the capabilities of our method are illustrated by both the Tikhonov and the Landweber method.
期刊介绍:
MCRF aims to publish original research as well as expository papers on mathematical control theory and related fields. The goal is to provide a complete and reliable source of mathematical methods and results in this field. The journal will also accept papers from some related fields such as differential equations, functional analysis, probability theory and stochastic analysis, inverse problems, optimization, numerical computation, mathematical finance, information theory, game theory, system theory, etc., provided that they have some intrinsic connections with control theory.