Coarse Z-Boundaries for Groups

Pub Date : 2022-01-01 DOI:10.1307/mmj/20206001
C. Guilbault, Molly A. Moran
{"title":"Coarse Z-Boundaries for Groups","authors":"C. Guilbault, Molly A. Moran","doi":"10.1307/mmj/20206001","DOIUrl":null,"url":null,"abstract":". We generalize Bestvina’s notion of a Z -boundary for a group to that of a “coarse Z -boundary.” We show that established theorems about Z -boundaries carry over nicely to the more general theory, and that some wished-for properties of Z -boundaries become theorems when applied to coarse Z -boundaries. Most notably, the property of admitting a coarse Z -boundary is a pure quasi-isometry invariant. In the process, we streamline both new and existing definitions by in-troducing the notion of a “model Z -geometry.” In accordance with the existing theory, we also develop an equivariant version of the above—that of a “coarse E Z -boundary.”","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1307/mmj/20206001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

. We generalize Bestvina’s notion of a Z -boundary for a group to that of a “coarse Z -boundary.” We show that established theorems about Z -boundaries carry over nicely to the more general theory, and that some wished-for properties of Z -boundaries become theorems when applied to coarse Z -boundaries. Most notably, the property of admitting a coarse Z -boundary is a pure quasi-isometry invariant. In the process, we streamline both new and existing definitions by in-troducing the notion of a “model Z -geometry.” In accordance with the existing theory, we also develop an equivariant version of the above—that of a “coarse E Z -boundary.”
分享
查看原文
群的粗z边界
. 我们将Bestvina关于群的Z边界的概念推广为“粗Z边界”的概念。我们证明了已建立的关于Z边界的定理可以很好地转移到更一般的理论中,并且当应用于粗糙的Z边界时,一些期望的Z边界性质成为定理。最值得注意的是,允许粗糙Z边界的性质是一个纯准等距不变量。在这个过程中,我们通过引入“模型Z几何”的概念来简化新的和现有的定义。根据已有的理论,我们还提出了上述理论的一个等变版本,即“粗E - Z边界”。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信