On graphs with minimal distance signless Laplacian energy

Pub Date : 2021-12-01 DOI:10.2478/ausm-2021-0028
S. Pirzada, B. Rather, Rezwan Ul Shaban, Merajuddin
{"title":"On graphs with minimal distance signless Laplacian energy","authors":"S. Pirzada, B. Rather, Rezwan Ul Shaban, Merajuddin","doi":"10.2478/ausm-2021-0028","DOIUrl":null,"url":null,"abstract":"Abstract For a simple connected graph G of order n having distance signless Laplacian eigenvalues ρ1Q≥ρ2Q≥⋯≥ρnQ \\rho _1^Q \\ge \\rho _2^Q \\ge \\cdots \\ge \\rho _n^Q , the distance signless Laplacian energy DSLE(G) is defined as DSLE(G)=∑i=1n| ρiQ-2W(G)n | DSLE\\left( G \\right) = \\sum\\nolimits_{i = 1}^n {\\left| {\\rho _i^Q - {{2W\\left( G \\right)} \\over n}} \\right|} where W(G) is the Weiner index of G. We show that the complete split graph has the minimum distance signless Laplacian energy among all connected graphs with given independence number. Further, we prove that the graph Kk ∨ ( Kt∪ Kn−k−t), 1≤t≤⌊ n-k2 ⌋ 1 \\le t \\le \\left\\lfloor {{{n - k} \\over 2}} \\right\\rfloor has the minimum distance signless Laplacian energy among all connected graphs with vertex connectivity k.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/ausm-2021-0028","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Abstract For a simple connected graph G of order n having distance signless Laplacian eigenvalues ρ1Q≥ρ2Q≥⋯≥ρnQ \rho _1^Q \ge \rho _2^Q \ge \cdots \ge \rho _n^Q , the distance signless Laplacian energy DSLE(G) is defined as DSLE(G)=∑i=1n| ρiQ-2W(G)n | DSLE\left( G \right) = \sum\nolimits_{i = 1}^n {\left| {\rho _i^Q - {{2W\left( G \right)} \over n}} \right|} where W(G) is the Weiner index of G. We show that the complete split graph has the minimum distance signless Laplacian energy among all connected graphs with given independence number. Further, we prove that the graph Kk ∨ ( Kt∪ Kn−k−t), 1≤t≤⌊ n-k2 ⌋ 1 \le t \le \left\lfloor {{{n - k} \over 2}} \right\rfloor has the minimum distance signless Laplacian energy among all connected graphs with vertex connectivity k.
分享
查看原文
最小距离图上的无符号拉普拉斯能量
对于具有距离无符号拉普拉斯特征值ρ1Q≥ρ2Q≥⋯≥ρnQ \rho _1^Q \ge\rho _2^Q \ge\cdots\ge\rho _n^Q的n阶简单连通图G,将距离无符号拉普拉斯能量DSLE(G)定义为:DSLE(G)=∑i=1n| ρiQ-2W(G)n | DSLE \left (G \right)= \sum\nolimits _i =1{ ^n }{\left | {\rho _i^Q -{{2W\left (G \right) }\over n }}\right |,}其中W(G)为G的Weiner指数。我们证明了在具有给定独立数的所有连通图中,完全分裂图具有最小的距离无符号拉普拉斯能量。进一步证明图Kk∨(Kt∪Kn−k−t), 1≤t≤⌊n-k2⌋1\le t \le\left\lfloor n-k{{{}\over 2 }}\right\rfloor在所有顶点连通性为k的连通图中具有最小的距离无符号拉普拉斯能量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信