{"title":"Every real $3$-manifold is real contact","authors":"M. Cengiz, Ferit Ozturk","doi":"10.4310/JSG.2022.v20.n6.a3","DOIUrl":null,"url":null,"abstract":"A real 3-manifold is a smooth 3-manifold together with an orientation preserving smooth involution, which is called a real structure. A real contact 3-manifold is a real 3-manifold with a contact distribution that is antisymmetric with respect to the real structure. We show that every real 3-manifold can be obtained via surgery along invariant knots starting from the standard real $S^3$ and that this operation can be performed in the contact setting too. Using this result we prove that any real 3-manifold admits a real contact structure. As a corollary we show that any oriented overtwisted contact structure on an integer homology real 3-sphere can be isotoped to be real. Finally we give construction examples on $S^1\\times S^2$ and lens spaces. For instance on every lens space there exists a unique real structure that acts on each Heegaard torus as hyperellipic involution. We show that any tight contact structure on any lens space is real with respect to that real structure.","PeriodicalId":50029,"journal":{"name":"Journal of Symplectic Geometry","volume":"89 5","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2021-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Symplectic Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/JSG.2022.v20.n6.a3","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1
Abstract
A real 3-manifold is a smooth 3-manifold together with an orientation preserving smooth involution, which is called a real structure. A real contact 3-manifold is a real 3-manifold with a contact distribution that is antisymmetric with respect to the real structure. We show that every real 3-manifold can be obtained via surgery along invariant knots starting from the standard real $S^3$ and that this operation can be performed in the contact setting too. Using this result we prove that any real 3-manifold admits a real contact structure. As a corollary we show that any oriented overtwisted contact structure on an integer homology real 3-sphere can be isotoped to be real. Finally we give construction examples on $S^1\times S^2$ and lens spaces. For instance on every lens space there exists a unique real structure that acts on each Heegaard torus as hyperellipic involution. We show that any tight contact structure on any lens space is real with respect to that real structure.
期刊介绍:
Publishes high quality papers on all aspects of symplectic geometry, with its deep roots in mathematics, going back to Huygens’ study of optics and to the Hamilton Jacobi formulation of mechanics. Nearly all branches of mathematics are treated, including many parts of dynamical systems, representation theory, combinatorics, packing problems, algebraic geometry, and differential topology.